implement gg.Graph methods Union, DelValueIn, and Values

This commit is contained in:
Brian Picciano 2017-10-22 11:39:32 -06:00
parent 9b577c0df8
commit 0b2b53ef56
2 changed files with 362 additions and 37 deletions

View File

@ -8,6 +8,8 @@ import (
"hash" "hash"
) )
// TODO rename half-edge to open-edge
// Identifier is implemented by any value which can return a unique string for // Identifier is implemented by any value which can return a unique string for
// itself via an Identify method // itself via an Identify method
type Identifier interface { type Identifier interface {
@ -121,6 +123,18 @@ func (v vertex) hasHalfEdge(he HalfEdge) bool {
return false return false
} }
func (v vertex) cpAndDelHalfEdge(he HalfEdge) (vertex, bool) {
heID := identify(he)
for i, in := range v.in {
if identify(in) == heID {
v = v.cp()
v.in = append(v.in[:i], v.in[i+1:]...)
return v, true
}
}
return v, false
}
// Graph is a wrapper around a set of connected Vertices // Graph is a wrapper around a set of connected Vertices
type Graph struct { type Graph struct {
vM map[string]vertex // only contains value vertices vM map[string]vertex // only contains value vertices
@ -182,11 +196,11 @@ func JunctionOut(in []HalfEdge, edgeVal Identifier) HalfEdge {
} }
} }
// ValueIn takes a HalfEdge and connects it to the Value Vertex containing val, // AddValueIn takes a HalfEdge and connects it to the Value Vertex containing
// and returns the new Graph which reflects that connection. Any Vertices // val, returning the new Graph which reflects that connection. Any Vertices
// referenced within the HalfEdge which do not yet exist in the Graph will also // referenced within the HalfEdge which do not yet exist in the Graph will also
// be created in this step. // be created in this step.
func (g *Graph) ValueIn(he HalfEdge, val Identifier) *Graph { func (g *Graph) AddValueIn(he HalfEdge, val Identifier) *Graph {
to := vertex{ to := vertex{
VertexType: Value, VertexType: Value,
val: val, val: val,
@ -217,18 +231,121 @@ func (g *Graph) ValueIn(he HalfEdge, val Identifier) *Graph {
if _, ok := g.vM[vID]; !ok { if _, ok := g.vM[vID]; !ok {
g.vM[vID] = v g.vM[vID] = v
} }
} } else {
for _, e := range v.in { for _, e := range v.in {
persist(e.fromV) persist(e.fromV)
}
} }
} }
delete(g.vM, toID) delete(g.vM, toID)
persist(to) persist(to)
for _, e := range to.in {
persist(e.fromV)
}
return g return g
} }
// TODO Merge // DelValueIn takes a HalfEdge and disconnects it from the Value Vertex
// containing val, returning the new Graph which reflects the disconnection. If
// the Value Vertex doesn't exist within the graph, or it doesn't have the given
// HalfEdge, no changes are made. Any vertices referenced by the HalfEdge for
// which that edge is their only outgoing edge will be removed from the Graph.
func (g *Graph) DelValueIn(he HalfEdge, val Identifier) *Graph {
to := vertex{
VertexType: Value,
val: val,
}
toID := identify(to)
// pull to out of the graph. if it's not there then bail
var ok bool
if to, ok = g.vM[toID]; !ok {
return g
}
// get new copy of to without the half-edge, or return if the half-edge
// wasn't even in to
to, ok = to.cpAndDelHalfEdge(he)
if !ok {
return g
}
g = g.cp()
g.vM[toID] = to
// connectedTo returns whether the vertex has any connections with the
// vertex of the given id, descending recursively
var connectedTo func(string, vertex) bool
connectedTo = func(vID string, curr vertex) bool {
for _, in := range curr.in {
if in.fromV.VertexType == Value && identify(in.fromV) == vID {
return true
} else if in.fromV.VertexType == Junction && connectedTo(vID, in.fromV) {
return true
}
}
return false
}
// isOrphaned returns whether the given vertex has any connections to other
// nodes in the graph
isOrphaned := func(v vertex) bool {
vID := identify(v)
if v, ok := g.vM[vID]; ok && len(v.in) > 0 {
return false
}
for vID2, v2 := range g.vM {
if vID2 == vID {
continue
} else if connectedTo(vID, v2) {
return false
}
}
return true
}
// if to is orphaned get rid of it
if isOrphaned(to) {
delete(g.vM, toID)
}
// rmOrphaned descends down the given HalfEdge and removes any Value
// Vertices referenced in it which are now orphaned
var rmOrphaned func(HalfEdge)
rmOrphaned = func(he HalfEdge) {
if he.fromV.VertexType == Value && isOrphaned(he.fromV) {
delete(g.vM, identify(he.fromV))
} else if he.fromV.VertexType == Junction {
for _, juncHe := range he.fromV.in {
rmOrphaned(juncHe)
}
}
}
rmOrphaned(he)
return g
}
// Union takes in another Graph and returns a new one which is the union of the
// two. Value vertices which are shared between the two will be merged so that
// the new vertex has the input edges of both.
func (g *Graph) Union(g2 *Graph) *Graph {
g = g.cp()
for vID, v2 := range g2.vM {
v, ok := g.vM[vID]
if !ok {
v = v2
} else {
for _, v2e := range v2.in {
if !v.hasHalfEdge(v2e) {
v.in = append(v.in, v2e)
}
}
}
g.vM[vID] = v
}
return g
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Graph traversal // Graph traversal
@ -287,6 +404,16 @@ func (g *Graph) Value(val Identifier) *Vertex {
return g.view[identify(val)] return g.view[identify(val)]
} }
// Values returns all Value Vertices in the Graph
func (g *Graph) Values() []*Vertex {
g.makeView()
vv := make([]*Vertex, 0, len(g.view))
for _, v := range g.view {
vv = append(vv, v)
}
return vv
}
// Equal returns whether or not the two Graphs are equivalent in value // Equal returns whether or not the two Graphs are equivalent in value
func Equal(g1, g2 *Graph) bool { func Equal(g1, g2 *Graph) bool {
if len(g1.vM) != len(g2.vM) { if len(g1.vM) != len(g2.vM) {

View File

@ -83,7 +83,7 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-basic", "values-basic",
func() *Graph { func() *Graph {
return Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) return Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
}, },
value("v0"), value("v0"),
value("v1", edge("e0", value("v0"))), value("v1", edge("e0", value("v0"))),
@ -92,8 +92,8 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-2edges", "values-2edges",
func() *Graph { func() *Graph {
g0 := Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v2")) g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v2"))
return g0.ValueIn(ValueOut(id("v1"), id("e1")), id("v2")) return g0.AddValueIn(ValueOut(id("v1"), id("e1")), id("v2"))
}, },
value("v0"), value("v0"),
value("v1"), value("v1"),
@ -106,8 +106,8 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-separate", "values-separate",
func() *Graph { func() *Graph {
g0 := Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
return g0.ValueIn(ValueOut(id("v2"), id("e2")), id("v3")) return g0.AddValueIn(ValueOut(id("v2"), id("e2")), id("v3"))
}, },
value("v0"), value("v0"),
value("v1", edge("e0", value("v0"))), value("v1", edge("e0", value("v0"))),
@ -118,7 +118,7 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-circular", "values-circular",
func() *Graph { func() *Graph {
return Null.ValueIn(ValueOut(id("v0"), id("e")), id("v0")) return Null.AddValueIn(ValueOut(id("v0"), id("e")), id("v0"))
}, },
value("v0", edge("e", value("v0"))), value("v0", edge("e", value("v0"))),
), ),
@ -126,8 +126,8 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-circular2", "values-circular2",
func() *Graph { func() *Graph {
g0 := Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
return g0.ValueIn(ValueOut(id("v1"), id("e1")), id("v0")) return g0.AddValueIn(ValueOut(id("v1"), id("e1")), id("v0"))
}, },
value("v0", edge("e1", value("v1", edge("e0", value("v0"))))), value("v0", edge("e1", value("v1", edge("e0", value("v0"))))),
value("v1", edge("e0", value("v0", edge("e1", value("v1"))))), value("v1", edge("e0", value("v0", edge("e1", value("v1"))))),
@ -136,9 +136,9 @@ func TestGraph(t *T) {
mkTest( mkTest(
"values-circular3", "values-circular3",
func() *Graph { func() *Graph {
g0 := Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
g1 := g0.ValueIn(ValueOut(id("v1"), id("e1")), id("v2")) g1 := g0.AddValueIn(ValueOut(id("v1"), id("e1")), id("v2"))
return g1.ValueIn(ValueOut(id("v2"), id("e2")), id("v1")) return g1.AddValueIn(ValueOut(id("v2"), id("e2")), id("v1"))
}, },
value("v0"), value("v0"),
value("v1", value("v1",
@ -157,7 +157,7 @@ func TestGraph(t *T) {
e0 := ValueOut(id("v0"), id("e0")) e0 := ValueOut(id("v0"), id("e0"))
e1 := ValueOut(id("v1"), id("e1")) e1 := ValueOut(id("v1"), id("e1"))
ej0 := JunctionOut([]HalfEdge{e0, e1}, id("ej0")) ej0 := JunctionOut([]HalfEdge{e0, e1}, id("ej0"))
return Null.ValueIn(ej0, id("v2")) return Null.AddValueIn(ej0, id("v2"))
}, },
value("v0"), value("v1"), value("v0"), value("v1"),
value("v2", junction("ej0", value("v2", junction("ej0",
@ -176,7 +176,7 @@ func TestGraph(t *T) {
e11 := ValueOut(id("v1"), id("e11")) e11 := ValueOut(id("v1"), id("e11"))
ej1 := JunctionOut([]HalfEdge{e01, e11}, id("ej1")) ej1 := JunctionOut([]HalfEdge{e01, e11}, id("ej1"))
ej2 := JunctionOut([]HalfEdge{ej0, ej1}, id("ej2")) ej2 := JunctionOut([]HalfEdge{ej0, ej1}, id("ej2"))
return Null.ValueIn(ej2, id("v2")) return Null.AddValueIn(ej2, id("v2"))
}, },
value("v0"), value("v1"), value("v0"), value("v1"),
value("v2", junction("ej2", value("v2", junction("ej2",
@ -197,11 +197,11 @@ func TestGraph(t *T) {
e0 := ValueOut(id("v0"), id("e0")) e0 := ValueOut(id("v0"), id("e0"))
e1 := ValueOut(id("v1"), id("e1")) e1 := ValueOut(id("v1"), id("e1"))
ej0 := JunctionOut([]HalfEdge{e0, e1}, id("ej0")) ej0 := JunctionOut([]HalfEdge{e0, e1}, id("ej0"))
g0 := Null.ValueIn(ej0, id("v2")) g0 := Null.AddValueIn(ej0, id("v2"))
e20 := ValueOut(id("v2"), id("e20")) e20 := ValueOut(id("v2"), id("e20"))
g1 := g0.ValueIn(e20, id("v0")) g1 := g0.AddValueIn(e20, id("v0"))
e21 := ValueOut(id("v2"), id("e21")) e21 := ValueOut(id("v2"), id("e21"))
return g1.ValueIn(e21, id("v1")) return g1.AddValueIn(e21, id("v1"))
}, },
value("v0", edge("e20", value("v2", junction("ej0", value("v0", edge("e20", value("v2", junction("ej0",
edge("e0", value("v0")), edge("e0", value("v0")),
@ -239,7 +239,7 @@ func TestGraph(t *T) {
func TestGraphImmutability(t *T) { func TestGraphImmutability(t *T) {
e0 := ValueOut(id("v0"), id("e0")) e0 := ValueOut(id("v0"), id("e0"))
g0 := Null.ValueIn(e0, id("v1")) g0 := Null.AddValueIn(e0, id("v1"))
assert.Nil(t, Null.Value(id("v0"))) assert.Nil(t, Null.Value(id("v0")))
assert.Nil(t, Null.Value(id("v1"))) assert.Nil(t, Null.Value(id("v1")))
assert.NotNil(t, g0.Value(id("v0"))) assert.NotNil(t, g0.Value(id("v0")))
@ -247,21 +247,219 @@ func TestGraphImmutability(t *T) {
// half-edges should be re-usable // half-edges should be re-usable
e1 := ValueOut(id("v2"), id("e1")) e1 := ValueOut(id("v2"), id("e1"))
g1a := g0.ValueIn(e1, id("v3a")) g1a := g0.AddValueIn(e1, id("v3a"))
g1b := g0.ValueIn(e1, id("v3b")) g1b := g0.AddValueIn(e1, id("v3b"))
assertVertexEqual(t, value("v3a", edge("e1", value("v2"))), g1a.Value(id("v3a"))) assertVertexEqual(t, value("v3a", edge("e1", value("v2"))), g1a.Value(id("v3a")))
assert.Nil(t, g1a.Value(id("v3b"))) assert.Nil(t, g1a.Value(id("v3b")))
assertVertexEqual(t, value("v3b", edge("e1", value("v2"))), g1b.Value(id("v3b"))) assertVertexEqual(t, value("v3b", edge("e1", value("v2"))), g1b.Value(id("v3b")))
assert.Nil(t, g1b.Value(id("v3a"))) assert.Nil(t, g1b.Value(id("v3a")))
// ... even re-usable twice in succession // ... even re-usable twice in succession
g2 := g0.ValueIn(e1, id("v3")).ValueIn(e1, id("v4")) g2 := g0.AddValueIn(e1, id("v3")).AddValueIn(e1, id("v4"))
assert.Nil(t, g2.Value(id("v3b"))) assert.Nil(t, g2.Value(id("v3b")))
assert.Nil(t, g2.Value(id("v3a"))) assert.Nil(t, g2.Value(id("v3a")))
assertVertexEqual(t, value("v3", edge("e1", value("v2"))), g2.Value(id("v3"))) assertVertexEqual(t, value("v3", edge("e1", value("v2"))), g2.Value(id("v3")))
assertVertexEqual(t, value("v4", edge("e1", value("v2"))), g2.Value(id("v4"))) assertVertexEqual(t, value("v4", edge("e1", value("v2"))), g2.Value(id("v4")))
} }
func TestGraphDelValueIn(t *T) {
{ // removing from null
g := Null.DelValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
assert.True(t, Equal(Null, g))
}
{ // removing edge from vertex which doesn't have that edge
g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
g1 := g0.DelValueIn(ValueOut(id("v0"), id("e1")), id("v1"))
assert.True(t, Equal(g0, g1))
}
{ // removing only edge
he := ValueOut(id("v0"), id("e0"))
g0 := Null.AddValueIn(he, id("v1"))
g1 := g0.DelValueIn(he, id("v1"))
assert.True(t, Equal(Null, g1))
}
{ // removing only edge (junction)
he := JunctionOut([]HalfEdge{
ValueOut(id("v0"), id("e0")),
ValueOut(id("v1"), id("e1")),
}, id("ej0"))
g0 := Null.AddValueIn(he, id("v2"))
g1 := g0.DelValueIn(he, id("v2"))
assert.True(t, Equal(Null, g1))
}
{ // removing one of two edges
he := ValueOut(id("v1"), id("e0"))
g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v2"))
g1 := g0.AddValueIn(he, id("v2"))
g2 := g1.DelValueIn(he, id("v2"))
assert.True(t, Equal(g0, g2))
assert.NotNil(t, g2.Value(id("v0")))
assert.Nil(t, g2.Value(id("v1")))
assert.NotNil(t, g2.Value(id("v2")))
}
{ // removing one of two edges (junction)
e0 := ValueOut(id("v0"), id("e0"))
e1 := ValueOut(id("v1"), id("e1"))
e2 := ValueOut(id("v2"), id("e2"))
heA := JunctionOut([]HalfEdge{e0, e1}, id("heA"))
heB := JunctionOut([]HalfEdge{e1, e2}, id("heB"))
g0a := Null.AddValueIn(heA, id("v3"))
g0b := Null.AddValueIn(heB, id("v3"))
g1 := g0a.Union(g0b).DelValueIn(heA, id("v3"))
assert.True(t, Equal(g1, g0b))
assert.Nil(t, g1.Value(id("v0")))
assert.NotNil(t, g1.Value(id("v1")))
assert.NotNil(t, g1.Value(id("v2")))
assert.NotNil(t, g1.Value(id("v3")))
}
{ // removing one of two edges in circular graph
e0 := ValueOut(id("v0"), id("e0"))
e1 := ValueOut(id("v1"), id("e1"))
g0 := Null.AddValueIn(e0, id("v1")).AddValueIn(e1, id("v0"))
g1 := g0.DelValueIn(e0, id("v1"))
assert.True(t, Equal(Null.AddValueIn(e1, id("v0")), g1))
assert.NotNil(t, g1.Value(id("v0")))
assert.NotNil(t, g1.Value(id("v1")))
}
{ // removing to's only edge, sub-nodes have edge to each other
ej := JunctionOut([]HalfEdge{
ValueOut(id("v0"), id("ej0")),
ValueOut(id("v1"), id("ej0")),
}, id("ej"))
g0 := Null.AddValueIn(ej, id("v2"))
e0 := ValueOut(id("v0"), id("e0"))
g1 := g0.AddValueIn(e0, id("v1"))
g2 := g1.DelValueIn(ej, id("v2"))
assert.True(t, Equal(Null.AddValueIn(e0, id("v1")), g2))
assert.NotNil(t, g2.Value(id("v0")))
assert.NotNil(t, g2.Value(id("v1")))
assert.Nil(t, g2.Value(id("v2")))
}
}
func TestGraphUnion(t *T) {
assertUnion := func(g1, g2 *Graph) *Graph {
ga := g1.Union(g2)
gb := g2.Union(g1)
assert.True(t, Equal(ga, gb))
return ga
}
{ // Union with Null
assert.True(t, Equal(Null, Null.Union(Null)))
g := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
assert.True(t, Equal(g, assertUnion(g, Null)))
}
{ // Two disparate graphs union'd
g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
g1 := Null.AddValueIn(ValueOut(id("v2"), id("e1")), id("v3"))
g := assertUnion(g0, g1)
assertVertexEqual(t, value("v0"), g.Value(id("v0")))
assertVertexEqual(t, value("v1", edge("e0", value("v0"))), g.Value(id("v1")))
assertVertexEqual(t, value("v2"), g.Value(id("v2")))
assertVertexEqual(t, value("v3", edge("e1", value("v2"))), g.Value(id("v3")))
}
{ // Two disparate graphs with junctions
ga := Null.AddValueIn(JunctionOut([]HalfEdge{
ValueOut(id("va0"), id("ea0")),
ValueOut(id("va1"), id("ea1")),
}, id("eaj")), id("va2"))
gb := Null.AddValueIn(JunctionOut([]HalfEdge{
ValueOut(id("vb0"), id("eb0")),
ValueOut(id("vb1"), id("eb1")),
}, id("ebj")), id("vb2"))
g := assertUnion(ga, gb)
assertVertexEqual(t, value("va0"), g.Value(id("va0")))
assertVertexEqual(t, value("va1"), g.Value(id("va1")))
assertVertexEqual(t,
value("va2", junction("eaj",
edge("ea0", value("va0")),
edge("ea1", value("va1")))),
g.Value(id("va2")),
)
assertVertexEqual(t, value("vb0"), g.Value(id("vb0")))
assertVertexEqual(t, value("vb1"), g.Value(id("vb1")))
assertVertexEqual(t,
value("vb2", junction("ebj",
edge("eb0", value("vb0")),
edge("eb1", value("vb1")))),
g.Value(id("vb2")),
)
}
{ // Two partially overlapping graphs
g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v2"))
g1 := Null.AddValueIn(ValueOut(id("v1"), id("e1")), id("v2"))
g := assertUnion(g0, g1)
assertVertexEqual(t, value("v0"), g.Value(id("v0")))
assertVertexEqual(t, value("v1"), g.Value(id("v1")))
assertVertexEqual(t,
value("v2",
edge("e0", value("v0")),
edge("e1", value("v1")),
),
g.Value(id("v2")),
)
}
{ // two partially overlapping graphs with junctions
g0 := Null.AddValueIn(JunctionOut([]HalfEdge{
ValueOut(id("v0"), id("e0")),
ValueOut(id("v1"), id("e1")),
}, id("ej0")), id("v2"))
g1 := Null.AddValueIn(JunctionOut([]HalfEdge{
ValueOut(id("v0"), id("e0")),
ValueOut(id("v1"), id("e1")),
}, id("ej1")), id("v2"))
g := assertUnion(g0, g1)
assertVertexEqual(t, value("v0"), g.Value(id("v0")))
assertVertexEqual(t, value("v1"), g.Value(id("v1")))
assertVertexEqual(t,
value("v2",
junction("ej0", edge("e0", value("v0")), edge("e1", value("v1"))),
junction("ej1", edge("e0", value("v0")), edge("e1", value("v1"))),
),
g.Value(id("v2")),
)
}
{ // Two equal graphs
g0 := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
g := assertUnion(g0, g0)
assertVertexEqual(t, value("v0"), g.Value(id("v0")))
assertVertexEqual(t,
value("v1", edge("e0", value("v0"))),
g.Value(id("v1")),
)
}
{ // Two equal graphs with junctions
g0 := Null.AddValueIn(JunctionOut([]HalfEdge{
ValueOut(id("v0"), id("e0")),
ValueOut(id("v1"), id("e1")),
}, id("ej0")), id("v2"))
g := assertUnion(g0, g0)
assertVertexEqual(t, value("v0"), g.Value(id("v0")))
assertVertexEqual(t, value("v1"), g.Value(id("v1")))
assertVertexEqual(t,
value("v2",
junction("ej0", edge("e0", value("v0")), edge("e1", value("v1"))),
),
g.Value(id("v2")),
)
}
}
func TestGraphEqual(t *T) { func TestGraphEqual(t *T) {
assertEqual := func(g1, g2 *Graph) { assertEqual := func(g1, g2 *Graph) {
assert.True(t, Equal(g1, g2)) assert.True(t, Equal(g1, g2))
@ -278,32 +476,32 @@ func TestGraphEqual(t *T) {
{ {
// graph is equal to itself, not to null // graph is equal to itself, not to null
e0 := ValueOut(id("v0"), id("e0")) e0 := ValueOut(id("v0"), id("e0"))
g0 := Null.ValueIn(e0, id("v1")) g0 := Null.AddValueIn(e0, id("v1"))
assertNotEqual(g0, Null) assertNotEqual(g0, Null)
assertEqual(g0, g0) assertEqual(g0, g0)
// adding the an existing edge again shouldn't do anything // adding the an existing edge again shouldn't do anything
assertEqual(g0, g0.ValueIn(e0, id("v1"))) assertEqual(g0, g0.AddValueIn(e0, id("v1")))
// g1a and g1b have the same vertices, but the edges are different // g1a and g1b have the same vertices, but the edges are different
g1a := g0.ValueIn(ValueOut(id("v0"), id("e1a")), id("v2")) g1a := g0.AddValueIn(ValueOut(id("v0"), id("e1a")), id("v2"))
g1b := g0.ValueIn(ValueOut(id("v0"), id("e1b")), id("v2")) g1b := g0.AddValueIn(ValueOut(id("v0"), id("e1b")), id("v2"))
assertNotEqual(g1a, g1b) assertNotEqual(g1a, g1b)
} }
{ // equal construction should yield equality, even if out of order { // equal construction should yield equality, even if out of order
ga := Null.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) ga := Null.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
ga = ga.ValueIn(ValueOut(id("v1"), id("e1")), id("v2")) ga = ga.AddValueIn(ValueOut(id("v1"), id("e1")), id("v2"))
gb := Null.ValueIn(ValueOut(id("v1"), id("e1")), id("v2")) gb := Null.AddValueIn(ValueOut(id("v1"), id("e1")), id("v2"))
gb = gb.ValueIn(ValueOut(id("v0"), id("e0")), id("v1")) gb = gb.AddValueIn(ValueOut(id("v0"), id("e0")), id("v1"))
assertEqual(ga, gb) assertEqual(ga, gb)
} }
{ // junction basic test { // junction basic test
e0 := ValueOut(id("v0"), id("e0")) e0 := ValueOut(id("v0"), id("e0"))
e1 := ValueOut(id("v1"), id("e1")) e1 := ValueOut(id("v1"), id("e1"))
ga := Null.ValueIn(JunctionOut([]HalfEdge{e0, e1}, id("ej")), id("v2")) ga := Null.AddValueIn(JunctionOut([]HalfEdge{e0, e1}, id("ej")), id("v2"))
gb := Null.ValueIn(JunctionOut([]HalfEdge{e1, e0}, id("ej")), id("v2")) gb := Null.AddValueIn(JunctionOut([]HalfEdge{e1, e0}, id("ej")), id("v2"))
assertEqual(ga, ga) assertEqual(ga, ga)
assertNotEqual(ga, gb) assertNotEqual(ga, gb)
} }