// Package gg implements ginger graph creation, traversal, and (de)serialization package gg import ( "fmt" "strings" ) // ZeroValue is a Value with no fields set. var ZeroValue Value // Value represents a value being stored in a Graph. type Value struct { // Only one of these fields may be set Name *string Number *int64 Graph *Graph // TODO coming soon! // String *string // Optional fields indicating the token which was used to construct this // Value, if any. LexerToken *LexerToken } // IsZero returns true if the Value is the zero value (none of the sub-value // fields are set). LexerToken is ignored for this check. func (v Value) IsZero() bool { v.LexerToken = nil return v == Value{} } // Equal returns true if the passed in Value is equivalent. func (v Value) Equal(v2 Value) bool { switch { case v.IsZero() && v2.IsZero(): return true case v.Name != nil && v2.Name != nil && *v.Name == *v2.Name: return true case v.Number != nil && v2.Number != nil && *v.Number == *v2.Number: return true case v.Graph != nil && v2.Graph != nil && Equal(v.Graph, v2.Graph): return true default: return false } } func (v Value) String() string { switch { case v.IsZero(): return "" case v.Name != nil: return *v.Name case v.Number != nil: return fmt.Sprint(*v.Number) case v.Graph != nil: return v.Graph.String() default: panic("unknown value kind") } } //////////////////////////////////////////////////////////////////////////////// // OpenEdge is an un-realized Edge which can't be used for anything except // constructing graphs. It has no meaning on its own. type OpenEdge struct { fromV vertex edgeVal Value } func (oe OpenEdge) String() string { vertexType := "tup" if oe.fromV.val != nil { vertexType = "val" } return fmt.Sprintf("%s(%s, %s)", vertexType, oe.fromV.String(), oe.edgeVal.String()) } // WithEdgeValue returns a copy of the OpenEdge with the given Value replacing // the previous edge value. // // NOTE I _think_ this can be factored out once Graph is genericized. func (oe OpenEdge) WithEdgeValue(val Value) OpenEdge { oe.edgeVal = val return oe } // EdgeValue returns the Value which lies on the edge itself. func (oe OpenEdge) EdgeValue() Value { return oe.edgeVal } // FromValue returns the Value from which the OpenEdge was created via ValueOut, // or false if it wasn't created via ValueOut. func (oe OpenEdge) FromValue() (Value, bool) { if oe.fromV.val == nil { return ZeroValue, false } return *oe.fromV.val, true } // FromTuple returns the tuple of OpenEdges from which the OpenEdge was created // via TupleOut, or false if it wasn't created via TupleOut. func (oe OpenEdge) FromTuple() ([]OpenEdge, bool) { if oe.fromV.val != nil { return nil, false } return oe.fromV.tup, true } // ValueOut creates a OpenEdge which, when used to construct a Graph, represents // an edge (with edgeVal attached to it) coming from the ValueVertex containing // val. func ValueOut(val, edgeVal Value) OpenEdge { return OpenEdge{fromV: vertex{val: &val}, edgeVal: edgeVal} } // TupleOut creates an OpenEdge which, when used to construct a Graph, // represents an edge (with edgeVal attached to it) coming from the // TupleVertex comprised of the given ordered-set of input edges. // // If len(ins) == 1 && edgeVal.IsZero(), then that single OpenEdge is // returned as-is. func TupleOut(ins []OpenEdge, edgeVal Value) OpenEdge { if len(ins) == 1 { in := ins[0] if edgeVal.IsZero() { return in } if in.edgeVal.IsZero() { in.edgeVal = edgeVal return in } } return OpenEdge{ fromV: vertex{tup: ins}, edgeVal: edgeVal, } } func (oe OpenEdge) equal(oe2 OpenEdge) bool { return oe.edgeVal.Equal(oe2.edgeVal) && oe.fromV.equal(oe2.fromV) } type vertex struct { val *Value tup []OpenEdge } func (v vertex) equal(v2 vertex) bool { if v.val != nil { return v2.val != nil && v.val.Equal(*v2.val) } if len(v.tup) != len(v2.tup) { return false } for i := range v.tup { if !v.tup[i].equal(v2.tup[i]) { return false } } return true } func (v vertex) String() string { if v.val != nil { return v.val.String() } strs := make([]string, len(v.tup)) for i := range v.tup { strs[i] = v.tup[i].String() } return fmt.Sprintf("[%s]", strings.Join(strs, ", ")) } type graphValueIn struct { val Value edges []OpenEdge } func (valIn graphValueIn) cp() graphValueIn { cp := valIn cp.edges = make([]OpenEdge, len(valIn.edges)) copy(cp.edges, valIn.edges) return valIn } func (valIn graphValueIn) equal(valIn2 graphValueIn) bool { if !valIn.val.Equal(valIn2.val) { return false } if len(valIn.edges) != len(valIn2.edges) { return false } outer: for _, edge := range valIn.edges { for _, edge2 := range valIn2.edges { if edge.equal(edge2) { continue outer } } return false } return true } // Graph is an immutable container of a set of vertices. The Graph keeps track // of all Values which terminate an OpenEdge (which may be a tree of Value/Tuple // vertices). // // NOTE The current implementation of Graph is incredibly inefficient, there's // lots of O(N) operations, unnecessary copying on changes, and duplicate data // in memory. type Graph struct { valIns []graphValueIn } // ZeroGraph is the root empty graph, and is the base off which all graphs are // built. var ZeroGraph = &Graph{} func (g *Graph) cp() *Graph { cp := &Graph{ valIns: make([]graphValueIn, len(g.valIns)), } copy(cp.valIns, g.valIns) return cp } func (g *Graph) String() string { var strs []string for _, valIn := range g.valIns { for _, oe := range valIn.edges { strs = append( strs, fmt.Sprintf("valIn(%s, %s)", oe.String(), valIn.val.String()), ) } } return fmt.Sprintf("graph(%s)", strings.Join(strs, ", ")) } // ValueIns returns, if any, all OpenEdges which lead to the given Value in the // Graph (ie, all those added via AddValueIn). func (g *Graph) ValueIns(val Value) []OpenEdge { for _, valIn := range g.valIns { if valIn.val.Equal(val) { return valIn.cp().edges } } return nil } // AddValueIn takes a OpenEdge and connects it to the Value Vertex containing // val, returning the new Graph which reflects that connection. Any Vertices // referenced within toe OpenEdge which do not yet exist in the Graph will also // be created in this step. func (g *Graph) AddValueIn(oe OpenEdge, val Value) *Graph { edges := g.ValueIns(val) for _, existingOE := range edges { if existingOE.equal(oe) { return g } } // ValueIns returns a copy of edges, so we're ok to modify it. edges = append(edges, oe) valIn := graphValueIn{val: val, edges: edges} g = g.cp() for i, existingValIn := range g.valIns { if existingValIn.val.Equal(val) { g.valIns[i] = valIn return g } } g.valIns = append(g.valIns, valIn) return g } // Equal returns whether or not the two Graphs are equivalent in value. func Equal(g1, g2 *Graph) bool { if len(g1.valIns) != len(g2.valIns) { return false } outer: for _, valIn1 := range g1.valIns { for _, valIn2 := range g2.valIns { if valIn1.equal(valIn2) { continue outer } } return false } return true }