// Package graph implements a generic directed graph type, with support for // tuple vertices in addition to traditional "value" vertices. package graph import ( "fmt" "strings" ) // Value is any value which can be stored within a Graph. Values should be // considered immutable, ie once used with the graph package their internal // value does not change. type Value interface { Equal(Value) bool String() string } // OpenEdge is an un-realized Edge which can't be used for anything except // constructing graphs. It has no meaning on its own. type OpenEdge[V Value] struct { val *V tup []*OpenEdge[V] edgeVal V } func (oe *OpenEdge[V]) equal(oe2 *OpenEdge[V]) bool { if !oe.edgeVal.Equal(oe2.edgeVal) { return false } if oe.val != nil { return oe2.val != nil && (*oe.val).Equal(*oe2.val) } if len(oe.tup) != len(oe2.tup) { return false } for i := range oe.tup { if !oe.tup[i].equal(oe2.tup[i]) { return false } } return true } func (oe *OpenEdge[V]) String() string { vertexType := "tup" var fromStr string if oe.val != nil { vertexType = "val" fromStr = (*oe.val).String() } else { strs := make([]string, len(oe.tup)) for i := range oe.tup { strs[i] = oe.tup[i].String() } fromStr = fmt.Sprintf("[%s]", strings.Join(strs, ", ")) } return fmt.Sprintf("%s(%s, %s)", vertexType, fromStr, oe.edgeVal.String()) } // WithEdgeValue returns a copy of the OpenEdge with the given Value replacing // the previous edge value. // // NOTE I _think_ this can be factored out once Graph is genericized. func (oe *OpenEdge[V]) WithEdgeValue(val V) *OpenEdge[V] { oeCp := *oe oeCp.edgeVal = val return &oeCp } // EdgeValue returns the Value which lies on the edge itself. func (oe OpenEdge[V]) EdgeValue() V { return oe.edgeVal } // FromValue returns the Value from which the OpenEdge was created via ValueOut, // or false if it wasn't created via ValueOut. func (oe OpenEdge[V]) FromValue() (V, bool) { if oe.val == nil { var zero V return zero, false } return *oe.val, true } // FromTuple returns the tuple of OpenEdges from which the OpenEdge was created // via TupleOut, or false if it wasn't created via TupleOut. func (oe OpenEdge[V]) FromTuple() ([]*OpenEdge[V], bool) { if oe.val != nil { return nil, false } return oe.tup, true } // ValueOut creates a OpenEdge which, when used to construct a Graph, represents // an edge (with edgeVal attached to it) coming from the vertex containing val. func ValueOut[V Value](val, edgeVal V) *OpenEdge[V] { return &OpenEdge[V]{ val: &val, edgeVal: edgeVal, } } // TupleOut creates an OpenEdge which, when used to construct a Graph, // represents an edge (with edgeVal attached to it) coming from the vertex // comprised of the given ordered-set of input edges. func TupleOut[V Value](ins []*OpenEdge[V], edgeVal V) *OpenEdge[V] { if len(ins) == 1 { var ( zero V in = ins[0] ) if edgeVal.Equal(zero) { return in } if in.edgeVal.Equal(zero) { return in.WithEdgeValue(edgeVal) } } return &OpenEdge[V]{ tup: ins, edgeVal: edgeVal, } } type graphValueIn[V Value] struct { val V edge *OpenEdge[V] } func (valIn graphValueIn[V]) equal(valIn2 graphValueIn[V]) bool { return valIn.val.Equal(valIn2.val) && valIn.edge.equal(valIn2.edge) } // Graph is an immutable container of a set of vertices. The Graph keeps track // of all Values which terminate an OpenEdge (which may be a tree of Value/Tuple // vertices). // // NOTE The current implementation of Graph is incredibly inefficient, there's // lots of O(N) operations, unnecessary copying on changes, and duplicate data // in memory. type Graph[V Value] struct { edges []*OpenEdge[V] valIns []graphValueIn[V] } func (g *Graph[V]) cp() *Graph[V] { cp := &Graph[V]{ edges: make([]*OpenEdge[V], len(g.edges)), valIns: make([]graphValueIn[V], len(g.valIns)), } copy(cp.edges, g.edges) copy(cp.valIns, g.valIns) return cp } func (g *Graph[V]) String() string { var strs []string for _, valIn := range g.valIns { strs = append( strs, fmt.Sprintf("valIn(%s, %s)", valIn.edge.String(), valIn.val.String()), ) } return fmt.Sprintf("graph(%s)", strings.Join(strs, ", ")) } // NOTE this method is used more for its functionality than for any performance // reasons... it's incredibly inefficient in how it deduplicates edges, but by // doing the deduplication we enable the graph map operation to work correctly. func (g *Graph[V]) dedupeEdge(edge *OpenEdge[V]) *OpenEdge[V] { // check if there's an existing edge which is fully equivalent in the graph // already, and if so return that. for i := range g.edges { if g.edges[i].equal(edge) { return g.edges[i] } } // if this edge is a value edge then there's nothing else to do, return it. if _, ok := edge.FromValue(); ok { return edge } // this edge is a tuple edge, it's possible that one of its sub-edges is // already in the graph. dedupe each sub-edge individually. tupEdges := make([]*OpenEdge[V], len(edge.tup)) for i := range edge.tup { tupEdges[i] = g.dedupeEdge(edge.tup[i]) } return TupleOut(tupEdges, edge.EdgeValue()) } // ValueIns returns, if any, all OpenEdges which lead to the given Value in the // Graph (ie, all those added via AddValueIn). // // The returned slice should not be modified. func (g *Graph[V]) ValueIns(val Value) []*OpenEdge[V] { var edges []*OpenEdge[V] for _, valIn := range g.valIns { if valIn.val.Equal(val) { edges = append(edges, valIn.edge) } } return edges } // AddValueIn takes a OpenEdge and connects it to the Value vertex containing // val, returning the new Graph which reflects that connection. func (g *Graph[V]) AddValueIn(oe *OpenEdge[V], val V) *Graph[V] { valIn := graphValueIn[V]{ val: val, edge: oe, } for i := range g.valIns { if g.valIns[i].equal(valIn) { return g } } valIn.edge = g.dedupeEdge(valIn.edge) g = g.cp() g.valIns = append(g.valIns, valIn) return g } // Equal returns whether or not the two Graphs are equivalent in value. func (g *Graph[V]) Equal(g2 *Graph[V]) bool { if len(g.valIns) != len(g2.valIns) { return false } outer: for _, valIn := range g.valIns { for _, valIn2 := range g2.valIns { if valIn.equal(valIn2) { continue outer } } return false } return true }