88 lines
1.9 KiB
Go
88 lines
1.9 KiB
Go
// Package geo implements basic geometric concepts used by gim
|
|
package geo
|
|
|
|
import "math"
|
|
|
|
// XY describes a 2-dimensional position or vector. The origin of the
|
|
// 2-dimensional space is a 0,0, with the x-axis going to the left and the
|
|
// y-axis going down.
|
|
type XY [2]int
|
|
|
|
// Zero is the zero point, or a zero vector, depending on what you're doing
|
|
var Zero = XY{0, 0}
|
|
|
|
// Unit vectors
|
|
var (
|
|
Up = XY{0, -1}
|
|
Down = XY{0, 1}
|
|
Left = XY{-1, 0}
|
|
Right = XY{1, 0}
|
|
)
|
|
|
|
// Add returns the result of adding the two XYs' fields individually
|
|
func (xy XY) Add(xy2 XY) XY {
|
|
xy[0] += xy2[0]
|
|
xy[1] += xy2[1]
|
|
return xy
|
|
}
|
|
|
|
// Mul returns the result of multiplying the two XYs' fields individually
|
|
func (xy XY) Mul(xy2 XY) XY {
|
|
xy[0] *= xy2[0]
|
|
xy[1] *= xy2[1]
|
|
return xy
|
|
}
|
|
|
|
// Scale returns the result of multiplying both of the XY's fields by the scalar
|
|
func (xy XY) Scale(scalar int) XY {
|
|
return xy.Mul(XY{scalar, scalar})
|
|
}
|
|
|
|
// Inv inverses the XY, a shortcut for xy.Scale(-1)
|
|
func (xy XY) Inv() XY {
|
|
return xy.Scale(-1)
|
|
}
|
|
|
|
// Sub subtracts xy2 from xy and returns the result. A shortcut for
|
|
// xy.Add(xy2.Inv())
|
|
func (xy XY) Sub(xy2 XY) XY {
|
|
return xy.Add(xy2.Inv())
|
|
}
|
|
|
|
func round(f float64, r int) int {
|
|
switch {
|
|
case r < 0:
|
|
f = math.Floor(f)
|
|
case r == 0:
|
|
if f < 0 {
|
|
f = math.Ceil(f - 0.5)
|
|
}
|
|
f = math.Floor(f + 0.5)
|
|
case r > 0:
|
|
f = math.Ceil(f)
|
|
}
|
|
return int(f)
|
|
}
|
|
|
|
func (xy XY) toF64() [2]float64 {
|
|
return [2]float64{
|
|
float64(xy[0]),
|
|
float64(xy[1]),
|
|
}
|
|
}
|
|
|
|
// Midpoint returns the midpoint between the two XYs. The rounder indicates what
|
|
// to do about non-whole values when they're come across:
|
|
// - rounder < 0 : floor
|
|
// - rounder = 0 : round
|
|
// - rounder > 0 : ceil
|
|
func (xy XY) Midpoint(xy2 XY, rounder int) XY {
|
|
xyf, xy2f := xy.toF64(), xy2.toF64()
|
|
xf := xyf[0] + ((xy2f[0] - xyf[0]) / 2)
|
|
yf := xyf[1] + ((xy2f[1] - xyf[1]) / 2)
|
|
return XY{
|
|
round(xf, rounder),
|
|
round(yf, rounder),
|
|
}
|
|
}
|