214 lines
5.5 KiB
Go
214 lines
5.5 KiB
Go
// Package view implements rendering a graph to a terminal.
|
|
package view
|
|
|
|
import (
|
|
"sort"
|
|
|
|
"github.com/mediocregopher/ginger/gg"
|
|
"github.com/mediocregopher/ginger/gim/geo"
|
|
"github.com/mediocregopher/ginger/gim/terminal"
|
|
"github.com/mediocregopher/ginger/gim/view/constraint"
|
|
)
|
|
|
|
// View wraps a single Graph instance and a set of display options for it, and
|
|
// generates renderable terminal output for it.
|
|
type View struct {
|
|
g *gg.Graph
|
|
start gg.Value
|
|
|
|
primFlowDir, secFlowDir geo.XY
|
|
}
|
|
|
|
// New instantiates and returns a view around the given Graph instance, with
|
|
// start indicating the value vertex to consider the "root" of the graph.
|
|
//
|
|
// Drawing is done by aligning the vertices into rows and columns in such a way
|
|
// as to reduce edge crossings. primaryDir indicates the direction edges will
|
|
// primarily be pointed in. For example, if it is geo.Down then adjacent
|
|
// vertices will be arranged into columns.
|
|
//
|
|
// secondaryDir indicates the direction vertices should be arranged when they
|
|
// end up in the same "rank" (e.g. when primaryDir is geo.Down, all vertices on
|
|
// the same row will be the same "rank").
|
|
//
|
|
// A primaryDir/secondaryDir of either geo.Down/geo.Right or geo.Right/geo.Down
|
|
// are recommended, but any combination of perpendicular directions is allowed.
|
|
func New(g *gg.Graph, start gg.Value, primaryDir, secondaryDir geo.XY) *View {
|
|
return &View{
|
|
g: g,
|
|
start: start,
|
|
primFlowDir: primaryDir,
|
|
secFlowDir: secondaryDir,
|
|
}
|
|
}
|
|
|
|
// Draw renders and draws the View's Graph to the Buffer.
|
|
func (view *View) Draw(buf *terminal.Buffer) {
|
|
relPos, _, secSol := posSolve(view.g)
|
|
|
|
// create boxes
|
|
var boxes []*box
|
|
boxesM := map[*box]*gg.Vertex{}
|
|
boxesMr := map[*gg.Vertex]*box{}
|
|
const (
|
|
primPadding = 5
|
|
secPadding = 1
|
|
)
|
|
var primPos int
|
|
for _, vv := range relPos {
|
|
var primBoxes []*box // boxes on just this level
|
|
var maxPrim int
|
|
var secPos int
|
|
for _, v := range vv {
|
|
primVec := view.primFlowDir.Scale(primPos)
|
|
secVec := view.secFlowDir.Scale(secPos)
|
|
|
|
b := boxFromVertex(v, view.primFlowDir)
|
|
b.topLeft = primVec.Add(secVec)
|
|
boxes = append(boxes, &b)
|
|
primBoxes = append(primBoxes, &b)
|
|
boxesM[&b] = v
|
|
boxesMr[v] = &b
|
|
|
|
bSize := b.rect().Size
|
|
primBoxLen := bSize.Mul(view.primFlowDir).Len()
|
|
secBoxLen := bSize.Mul(view.secFlowDir).Len()
|
|
if primBoxLen > maxPrim {
|
|
maxPrim = primBoxLen
|
|
}
|
|
secPos += secBoxLen + secPadding
|
|
}
|
|
for _, b := range primBoxes {
|
|
b.topLeft = b.topLeft.Add(view.primFlowDir.Scale(primPos))
|
|
}
|
|
primPos += maxPrim + primPadding
|
|
}
|
|
|
|
// maps a vertex to all of its to edges, sorted by secSol
|
|
findFromIM := map[*gg.Vertex][]gg.Edge{}
|
|
// returns the index of this edge in from's Out
|
|
findFromI := func(from *gg.Vertex, e gg.Edge) int {
|
|
edges, ok := findFromIM[from]
|
|
if !ok {
|
|
edges = make([]gg.Edge, len(from.Out))
|
|
copy(edges, from.Out)
|
|
sort.Slice(edges, func(i, j int) bool {
|
|
// TODO if two edges go to the same vertex, how are they sorted?
|
|
return secSol[edges[i].To.ID] < secSol[edges[j].To.ID]
|
|
})
|
|
findFromIM[from] = edges
|
|
}
|
|
|
|
for i, fe := range edges {
|
|
if fe == e {
|
|
return i
|
|
}
|
|
}
|
|
panic("edge not found in from.Out")
|
|
}
|
|
|
|
// create lines
|
|
var lines []line
|
|
for _, b := range boxes {
|
|
v := boxesM[b]
|
|
for i, e := range v.In {
|
|
bFrom := boxesMr[e.From]
|
|
fromI := findFromI(e.From, e)
|
|
buf := terminal.NewBuffer()
|
|
buf.WriteString(e.Value.V.(string))
|
|
lines = append(lines, line{
|
|
from: bFrom,
|
|
fromI: fromI,
|
|
to: b,
|
|
toI: i,
|
|
bodyBuf: buf,
|
|
})
|
|
}
|
|
}
|
|
|
|
// actually draw the boxes and lines
|
|
for _, b := range boxes {
|
|
b.draw(buf)
|
|
}
|
|
for _, line := range lines {
|
|
line.draw(buf, view.primFlowDir, view.secFlowDir)
|
|
}
|
|
}
|
|
|
|
// "Solves" vertex position by detemining relative positions of vertices in
|
|
// primary and secondary directions (independently), with relative positions
|
|
// being described by "levels", where multiple vertices can occupy one level.
|
|
//
|
|
// Primary determines relative position in the primary direction by trying
|
|
// to place vertices before their outs and after their ins.
|
|
//
|
|
// Secondary determines relative position in the secondary direction by
|
|
// trying to place vertices relative to vertices they share an edge with in
|
|
// the order that the edges appear on the shared node.
|
|
func posSolve(g *gg.Graph) ([][]*gg.Vertex, map[string]int, map[string]int) {
|
|
primEng := constraint.NewEngine()
|
|
secEng := constraint.NewEngine()
|
|
|
|
strM := g.ByID()
|
|
for _, v := range strM {
|
|
var prevIn *gg.Vertex
|
|
for _, e := range v.In {
|
|
primEng.AddConstraint(constraint.Constraint{
|
|
Elem: e.From.ID,
|
|
LT: v.ID,
|
|
})
|
|
if prevIn != nil {
|
|
secEng.AddConstraint(constraint.Constraint{
|
|
Elem: prevIn.ID,
|
|
LT: e.From.ID,
|
|
})
|
|
}
|
|
prevIn = e.From
|
|
}
|
|
|
|
var prevOut *gg.Vertex
|
|
for _, e := range v.Out {
|
|
if prevOut == nil {
|
|
continue
|
|
}
|
|
secEng.AddConstraint(constraint.Constraint{
|
|
Elem: prevOut.ID,
|
|
LT: e.To.ID,
|
|
})
|
|
prevOut = e.To
|
|
}
|
|
}
|
|
prim := primEng.Solve()
|
|
sec := secEng.Solve()
|
|
|
|
// determine maximum primary level
|
|
var maxPrim int
|
|
for _, lvl := range prim {
|
|
if lvl > maxPrim {
|
|
maxPrim = lvl
|
|
}
|
|
}
|
|
|
|
outStr := make([][]string, maxPrim+1)
|
|
for v, lvl := range prim {
|
|
outStr[lvl] = append(outStr[lvl], v)
|
|
}
|
|
|
|
// sort each primary level
|
|
for _, vv := range outStr {
|
|
sort.Slice(vv, func(i, j int) bool {
|
|
return sec[vv[i]] < sec[vv[j]]
|
|
})
|
|
}
|
|
|
|
// convert to vertices
|
|
out := make([][]*gg.Vertex, len(outStr))
|
|
for i, vv := range outStr {
|
|
out[i] = make([]*gg.Vertex, len(outStr[i]))
|
|
for j, v := range vv {
|
|
out[i][j] = strM[v]
|
|
}
|
|
}
|
|
return out, prim, sec
|
|
}
|