mediocre-blog/assets/viz/2/goog/math/long.js

966 lines
30 KiB
JavaScript
Raw Permalink Normal View History

2018-11-12 21:18:45 +00:00
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
* integer value, which faithfully simulates the behavior of a Java "long". This
* implementation is derived from LongLib in GWT.
*
*/
goog.provide('goog.math.Long');
goog.require('goog.asserts');
2018-11-12 21:18:45 +00:00
goog.require('goog.reflect');
/**
* Constructs a 64-bit two's-complement integer, given its low and high 32-bit
* values as *signed* integers. See the from* functions below for more
* convenient ways of constructing Longs.
*
* The internal representation of a long is the two given signed, 32-bit values.
* We use 32-bit pieces because these are the size of integers on which
* Javascript performs bit-operations. For operations like addition and
* multiplication, we split each number into 16-bit pieces, which can easily be
* multiplied within Javascript's floating-point representation without overflow
* or change in sign.
*
* In the algorithms below, we frequently reduce the negative case to the
* positive case by negating the input(s) and then post-processing the result.
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
* a positive number, it overflows back into a negative). Not handling this
* case would often result in infinite recursion.
*
* @param {number} low The low (signed) 32 bits of the long.
* @param {number} high The high (signed) 32 bits of the long.
* @struct
* @constructor
* @final
*/
goog.math.Long = function(low, high) {
/**
* @type {number}
* @private
*/
this.low_ = low | 0; // force into 32 signed bits.
/**
* @type {number}
* @private
*/
this.high_ = high | 0; // force into 32 signed bits.
};
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Long representations of small integer values.
* @type {!Object<number, !goog.math.Long>}
* @private
*/
goog.math.Long.IntCache_ = {};
/**
* A cache of the Long representations of common values.
* @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>}
* @private
*/
goog.math.Long.valueCache_ = {};
/**
* Returns a cached long number representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!goog.math.Long} The corresponding Long value.
* @private
*/
goog.math.Long.getCachedIntValue_ = function(value) {
return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) {
return new goog.math.Long(val, val < 0 ? -1 : 0);
});
};
/**
* The array of maximum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
goog.math.Long.MAX_VALUE_FOR_RADIX_ = [
'', '', // unused
'111111111111111111111111111111111111111111111111111111111111111',
// base 2
'2021110011022210012102010021220101220221', // base 3
'13333333333333333333333333333333', // base 4
'1104332401304422434310311212', // base 5
'1540241003031030222122211', // base 6
'22341010611245052052300', // base 7
'777777777777777777777', // base 8
'67404283172107811827', // base 9
'9223372036854775807', // base 10
'1728002635214590697', // base 11
'41a792678515120367', // base 12
'10b269549075433c37', // base 13
'4340724c6c71dc7a7', // base 14
'160e2ad3246366807', // base 15
'7fffffffffffffff', // base 16
'33d3d8307b214008', // base 17
'16agh595df825fa7', // base 18
'ba643dci0ffeehh', // base 19
'5cbfjia3fh26ja7', // base 20
'2heiciiie82dh97', // base 21
'1adaibb21dckfa7', // base 22
'i6k448cf4192c2', // base 23
'acd772jnc9l0l7', // base 24
'64ie1focnn5g77', // base 25
'3igoecjbmca687', // base 26
'27c48l5b37oaop', // base 27
'1bk39f3ah3dmq7', // base 28
'q1se8f0m04isb', // base 29
'hajppbc1fc207', // base 30
'bm03i95hia437', // base 31
'7vvvvvvvvvvvv', // base 32
'5hg4ck9jd4u37', // base 33
'3tdtk1v8j6tpp', // base 34
'2pijmikexrxp7', // base 35
'1y2p0ij32e8e7' // base 36
];
/**
* The array of minimum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
goog.math.Long.MIN_VALUE_FOR_RADIX_ = [
'', '', // unused
'-1000000000000000000000000000000000000000000000000000000000000000',
// base 2
'-2021110011022210012102010021220101220222', // base 3
'-20000000000000000000000000000000', // base 4
'-1104332401304422434310311213', // base 5
'-1540241003031030222122212', // base 6
'-22341010611245052052301', // base 7
'-1000000000000000000000', // base 8
'-67404283172107811828', // base 9
'-9223372036854775808', // base 10
'-1728002635214590698', // base 11
'-41a792678515120368', // base 12
'-10b269549075433c38', // base 13
'-4340724c6c71dc7a8', // base 14
'-160e2ad3246366808', // base 15
'-8000000000000000', // base 16
'-33d3d8307b214009', // base 17
'-16agh595df825fa8', // base 18
'-ba643dci0ffeehi', // base 19
'-5cbfjia3fh26ja8', // base 20
'-2heiciiie82dh98', // base 21
'-1adaibb21dckfa8', // base 22
'-i6k448cf4192c3', // base 23
'-acd772jnc9l0l8', // base 24
'-64ie1focnn5g78', // base 25
'-3igoecjbmca688', // base 26
'-27c48l5b37oaoq', // base 27
'-1bk39f3ah3dmq8', // base 28
'-q1se8f0m04isc', // base 29
'-hajppbc1fc208', // base 30
'-bm03i95hia438', // base 31
'-8000000000000', // base 32
'-5hg4ck9jd4u38', // base 33
'-3tdtk1v8j6tpq', // base 34
'-2pijmikexrxp8', // base 35
'-1y2p0ij32e8e8' // base 36
];
2018-11-12 21:18:45 +00:00
/**
* Returns a Long representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromInt = function(value) {
var intValue = value | 0;
goog.asserts.assert(value === intValue, 'value should be a 32-bit integer');
if (-128 <= intValue && intValue < 128) {
return goog.math.Long.getCachedIntValue_(intValue);
2018-11-12 21:18:45 +00:00
} else {
return new goog.math.Long(intValue, intValue < 0 ? -1 : 0);
2018-11-12 21:18:45 +00:00
}
};
/**
* Returns a Long representing the given value.
* NaN will be returned as zero. Infinity is converted to max value and
* -Infinity to min value.
* @param {number} value The number in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromNumber = function(value) {
if (isNaN(value)) {
return goog.math.Long.getZero();
} else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.getMinValue();
} else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.getMaxValue();
} else if (value < 0) {
return goog.math.Long.fromNumber(-value).negate();
} else {
return new goog.math.Long(
(value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
(value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
}
};
/**
* Returns a Long representing the 64-bit integer that comes by concatenating
* the given high and low bits. Each is assumed to use 32 bits.
* @param {number} lowBits The low 32-bits.
* @param {number} highBits The high 32-bits.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromBits = function(lowBits, highBits) {
return new goog.math.Long(lowBits, highBits);
};
/**
* Returns a Long representation of the given string, written using the given
* radix.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromString = function(str, opt_radix) {
if (str.length == 0) {
throw Error('number format error: empty string');
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (str.charAt(0) == '-') {
return goog.math.Long.fromString(str.substring(1), radix).negate();
} else if (str.indexOf('-') >= 0) {
throw Error('number format error: interior "-" character: ' + str);
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
var result = goog.math.Long.getZero();
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = goog.math.Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(goog.math.Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(goog.math.Long.fromNumber(value));
}
}
return result;
};
/**
* Returns the boolean value of whether the input string is within a Long's
* range. Assumes an input string containing only numeric characters with an
* optional preceding '-'.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {boolean} Whether the string is within the range of a Long.
*/
goog.math.Long.isStringInRange = function(str, opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
var extremeValue = (str.charAt(0) == '-') ?
goog.math.Long.MIN_VALUE_FOR_RADIX_[radix] :
goog.math.Long.MAX_VALUE_FOR_RADIX_[radix];
if (str.length < extremeValue.length) {
return true;
} else if (str.length == extremeValue.length && str <= extremeValue) {
return true;
} else {
return false;
}
};
2018-11-12 21:18:45 +00:00
// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.
/**
* Number used repeated below in calculations. This must appear before the
* first call to any from* function below.
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_32_DBL_ =
goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_64_DBL_ =
goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2;
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getZero = function() {
return goog.math.Long.getCachedIntValue_(0);
2018-11-12 21:18:45 +00:00
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getOne = function() {
return goog.math.Long.getCachedIntValue_(1);
2018-11-12 21:18:45 +00:00
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getNegOne = function() {
return goog.math.Long.getCachedIntValue_(-1);
2018-11-12 21:18:45 +00:00
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getMaxValue = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE,
function() {
return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
});
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getMinValue = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE,
function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); });
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getTwoPwr24 = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24,
function() { return goog.math.Long.fromInt(1 << 24); });
};
/** @return {number} The value, assuming it is a 32-bit integer. */
goog.math.Long.prototype.toInt = function() {
return this.low_;
};
/** @return {number} The closest floating-point representation to this value. */
goog.math.Long.prototype.toNumber = function() {
return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
this.getLowBitsUnsigned();
};
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
goog.math.Long.prototype.toString = function(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (this.isZero()) {
return '0';
}
if (this.isNegative()) {
if (this.equals(goog.math.Long.getMinValue())) {
// We need to change the Long value before it can be negated, so we remove
// the bottom-most digit in this base and then recurse to do the rest.
var radixLong = goog.math.Long.fromNumber(radix);
var div = this.div(radixLong);
var rem = div.multiply(radixLong).subtract(this);
return div.toString(radix) + rem.toInt().toString(radix);
} else {
return '-' + this.negate().toString(radix);
}
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
var rem = this;
var result = '';
while (true) {
var remDiv = rem.div(radixToPower);
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
var digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero()) {
return digits + result;
} else {
while (digits.length < 6) {
digits = '0' + digits;
}
result = '' + digits + result;
}
}
};
/** @return {number} The high 32-bits as a signed value. */
goog.math.Long.prototype.getHighBits = function() {
return this.high_;
};
/** @return {number} The low 32-bits as a signed value. */
goog.math.Long.prototype.getLowBits = function() {
return this.low_;
};
/** @return {number} The low 32-bits as an unsigned value. */
goog.math.Long.prototype.getLowBitsUnsigned = function() {
return (this.low_ >= 0) ? this.low_ :
goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
};
/**
* @return {number} Returns the number of bits needed to represent the absolute
* value of this Long.
*/
goog.math.Long.prototype.getNumBitsAbs = function() {
if (this.isNegative()) {
if (this.equals(goog.math.Long.getMinValue())) {
return 64;
} else {
return this.negate().getNumBitsAbs();
}
} else {
var val = this.high_ != 0 ? this.high_ : this.low_;
for (var bit = 31; bit > 0; bit--) {
if ((val & (1 << bit)) != 0) {
break;
}
}
return this.high_ != 0 ? bit + 33 : bit + 1;
}
};
/** @return {boolean} Whether this value is zero. */
goog.math.Long.prototype.isZero = function() {
return this.high_ == 0 && this.low_ == 0;
};
/** @return {boolean} Whether this value is negative. */
goog.math.Long.prototype.isNegative = function() {
return this.high_ < 0;
};
/** @return {boolean} Whether this value is odd. */
goog.math.Long.prototype.isOdd = function() {
return (this.low_ & 1) == 1;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long equals the other.
*/
goog.math.Long.prototype.equals = function(other) {
return (this.high_ == other.high_) && (this.low_ == other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long does not equal the other.
*/
goog.math.Long.prototype.notEquals = function(other) {
return (this.high_ != other.high_) || (this.low_ != other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than the other.
*/
goog.math.Long.prototype.lessThan = function(other) {
return this.compare(other) < 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than or equal to the other.
*/
goog.math.Long.prototype.lessThanOrEqual = function(other) {
return this.compare(other) <= 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than the other.
*/
goog.math.Long.prototype.greaterThan = function(other) {
return this.compare(other) > 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than or equal to the other.
*/
goog.math.Long.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* Compares this Long with the given one.
* @param {goog.math.Long} other Long to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
goog.math.Long.prototype.compare = function(other) {
if (this.equals(other)) {
return 0;
}
var thisNeg = this.isNegative();
var otherNeg = other.isNegative();
if (thisNeg && !otherNeg) {
return -1;
}
if (!thisNeg && otherNeg) {
return 1;
}
// at this point, the signs are the same, so subtraction will not overflow
if (this.subtract(other).isNegative()) {
return -1;
} else {
return 1;
}
};
/** @return {!goog.math.Long} The negation of this value. */
goog.math.Long.prototype.negate = function() {
if (this.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getMinValue();
} else {
return this.not().add(goog.math.Long.getOne());
}
};
/**
* Returns the sum of this and the given Long.
* @param {goog.math.Long} other Long to add to this one.
* @return {!goog.math.Long} The sum of this and the given Long.
*/
goog.math.Long.prototype.add = function(other) {
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns the difference of this and the given Long.
* @param {goog.math.Long} other Long to subtract from this.
* @return {!goog.math.Long} The difference of this and the given Long.
*/
goog.math.Long.prototype.subtract = function(other) {
return this.add(other.negate());
};
/**
* Returns the product of this and the given long.
* @param {goog.math.Long} other Long to multiply with this.
* @return {!goog.math.Long} The product of this and the other.
*/
goog.math.Long.prototype.multiply = function(other) {
if (this.isZero()) {
return goog.math.Long.getZero();
} else if (other.isZero()) {
return goog.math.Long.getZero();
}
if (this.equals(goog.math.Long.getMinValue())) {
return other.isOdd() ? goog.math.Long.getMinValue() :
goog.math.Long.getZero();
} else if (other.equals(goog.math.Long.getMinValue())) {
return this.isOdd() ? goog.math.Long.getMinValue() :
goog.math.Long.getZero();
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().multiply(other.negate());
} else {
return this.negate().multiply(other).negate();
}
} else if (other.isNegative()) {
return this.multiply(other.negate()).negate();
}
// If both longs are small, use float multiplication
if (this.lessThan(goog.math.Long.getTwoPwr24()) &&
other.lessThan(goog.math.Long.getTwoPwr24())) {
return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
}
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns this Long divided by the given one.
* @param {goog.math.Long} other Long by which to divide.
* @return {!goog.math.Long} This Long divided by the given one.
*/
goog.math.Long.prototype.div = function(other) {
if (other.isZero()) {
throw Error('division by zero');
} else if (this.isZero()) {
return goog.math.Long.getZero();
}
if (this.equals(goog.math.Long.getMinValue())) {
if (other.equals(goog.math.Long.getOne()) ||
other.equals(goog.math.Long.getNegOne())) {
return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
} else if (other.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getOne();
} else {
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
var approx = halfThis.div(other).shiftLeft(1);
if (approx.equals(goog.math.Long.getZero())) {
return other.isNegative() ? goog.math.Long.getOne() :
goog.math.Long.getNegOne();
} else {
var rem = this.subtract(other.multiply(approx));
var result = approx.add(rem.div(other));
return result;
}
}
} else if (other.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getZero();
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().div(other.negate());
} else {
return this.negate().div(other).negate();
}
} else if (other.isNegative()) {
return this.div(other.negate()).negate();
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = goog.math.Long.getZero();
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = goog.math.Long.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = goog.math.Long.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = goog.math.Long.getOne();
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Long modulo the given one.
* @param {goog.math.Long} other Long by which to mod.
* @return {!goog.math.Long} This Long modulo the given one.
*/
goog.math.Long.prototype.modulo = function(other) {
return this.subtract(this.div(other).multiply(other));
};
/** @return {!goog.math.Long} The bitwise-NOT of this value. */
goog.math.Long.prototype.not = function() {
return goog.math.Long.fromBits(~this.low_, ~this.high_);
};
/**
* Returns the bitwise-AND of this Long and the given one.
* @param {goog.math.Long} other The Long with which to AND.
* @return {!goog.math.Long} The bitwise-AND of this and the other.
*/
goog.math.Long.prototype.and = function(other) {
return goog.math.Long.fromBits(
this.low_ & other.low_, this.high_ & other.high_);
};
/**
* Returns the bitwise-OR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to OR.
* @return {!goog.math.Long} The bitwise-OR of this and the other.
*/
goog.math.Long.prototype.or = function(other) {
return goog.math.Long.fromBits(
this.low_ | other.low_, this.high_ | other.high_);
};
/**
* Returns the bitwise-XOR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to XOR.
* @return {!goog.math.Long} The bitwise-XOR of this and the other.
*/
goog.math.Long.prototype.xor = function(other) {
return goog.math.Long.fromBits(
this.low_ ^ other.low_, this.high_ ^ other.high_);
};
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the left by the given amount.
*/
goog.math.Long.prototype.shiftLeft = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var low = this.low_;
if (numBits < 32) {
var high = this.high_;
return goog.math.Long.fromBits(
low << numBits, (high << numBits) | (low >>> (32 - numBits)));
} else {
return goog.math.Long.fromBits(0, low << (numBits - 32));
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount.
* The new leading bits match the current sign bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount.
*/
goog.math.Long.prototype.shiftRight = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >> numBits);
} else {
return goog.math.Long.fromBits(
high >> (numBits - 32), high >= 0 ? 0 : -1);
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount, with
* zeros placed into the new leading bits.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount, with
* zeros placed into the new leading bits.
*/
goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
} else if (numBits == 32) {
return goog.math.Long.fromBits(high, 0);
} else {
return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
}
}
};
/**
* @enum {number} Ids of commonly requested Long instances.
* @private
*/
goog.math.Long.ValueCacheId_ = {
MAX_VALUE: 1,
MIN_VALUE: 2,
TWO_PWR_24: 6
};