refactor mcrypto signature code to have an actual Signature type which implicitely handles its salt and timestamp

This commit is contained in:
Brian Picciano 2018-03-23 15:10:53 +00:00
parent 56dbb1827e
commit 9b6c42572c
4 changed files with 212 additions and 250 deletions

View File

@ -4,11 +4,6 @@
package mcrypto package mcrypto
import ( import (
"bytes"
"encoding/hex"
"fmt"
"io"
"strconv"
"strings" "strings"
) )
@ -23,8 +18,6 @@ import (
const ( const (
uuidV0 = "0u" // u for uuid uuidV0 = "0u" // u for uuid
sigV0 = "0s" // s for signature sigV0 = "0s" // s for signature
exSigV0 = "0t" // t for time
uniqueSigV0 = "0q" // q for uni"q"ue
encryptedV0 = "0n" // n for "n"-crypted, harharhar encryptedV0 = "0n" // n for "n"-crypted, harharhar
) )
@ -32,12 +25,3 @@ func stripPrefix(s, prefix string) (string, bool) {
trimmed := strings.TrimPrefix(s, prefix) trimmed := strings.TrimPrefix(s, prefix)
return trimmed, len(trimmed) < len(s) return trimmed, len(trimmed) < len(s)
} }
func prefixReader(r io.Reader, prefix []byte) io.Reader {
b := make([]byte, 0, len(prefix)+hex.EncodedLen(strconv.IntSize)+2)
buf := bytes.NewBuffer(b)
fmt.Fprintf(buf, "%x\n", len(prefix))
buf.Write(prefix)
buf.WriteByte('\n')
return io.MultiReader(buf, r)
}

View File

@ -7,10 +7,9 @@ import (
"crypto/sha256" "crypto/sha256"
"encoding/binary" "encoding/binary"
"encoding/hex" "encoding/hex"
"encoding/json"
"errors" "errors"
"hash"
"io" "io"
"strings"
"time" "time"
"github.com/mediocregopher/mediocre-go-lib/mlog" "github.com/mediocregopher/mediocre-go-lib/mlog"
@ -25,23 +24,131 @@ var (
ErrInvalidSig = errors.New("invalid signature") ErrInvalidSig = errors.New("invalid signature")
) )
// Signature marshals/unmarshals an actual signature, produced internally by a
// Signer, along with the timestamp the signing took place and a random salt.
//
// All signatures produced in this package will have had the timestamp and salt
// included in the signature's input data, and so are also checked by the
// Verifier.
type Signature struct {
sig, salt []byte // neither of these should ever be more than 255 bytes long
t time.Time
}
// Time returns the timestamp the Signature was generated at
func (s Signature) Time() time.Time {
return s.t
}
func (s Signature) String() string {
// ts:8 + saltHeader:1 + salt + sigHeader:1 + sig
b := make([]byte, 10+len(s.salt)+len(s.sig))
// It will be year 2286 before the nano doesn't fit in uint64
binary.BigEndian.PutUint64(b, uint64(s.t.UnixNano()))
ptr := 8
b[ptr], ptr = uint8(len(s.salt)), ptr+1
ptr += copy(b[ptr:], s.salt)
b[ptr], ptr = uint8(len(s.sig)), ptr+1
copy(b[ptr:], s.sig)
return sigV0 + hex.EncodeToString(b)
}
// KV implements the method for the mlog.KVer interface
func (s Signature) KV() mlog.KV {
return mlog.KV{"sig": s.String()}
}
// MarshalText implements the method for the encoding.TextMarshaler interface
func (s Signature) MarshalText() ([]byte, error) {
return []byte(s.String()), nil
}
// UnmarshalText implements the method for the encoding.TextUnmarshaler
// interface
func (s *Signature) UnmarshalText(b []byte) error {
str := string(b)
strEnc, ok := stripPrefix(str, sigV0)
if !ok || len(strEnc) < hex.EncodedLen(10) {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sigStr": str})
}
b, err := hex.DecodeString(strEnc)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sigStr": str})
}
unixNano, b := int64(binary.BigEndian.Uint64(b[:8])), b[8:]
s.t = time.Unix(0, unixNano).Local()
readBytes := func() []byte {
if err != nil {
return nil
} else if len(b) < 1+int(b[0]) {
err = mlog.ErrWithKV(errMalformedSig, mlog.KV{"sigStr": str})
return nil
}
out := b[1 : 1+b[0]]
b = b[1+b[0]:]
return out
}
s.salt = readBytes()
s.sig = readBytes()
return err
}
// MarshalJSON implements the method for the json.Marshaler interface
func (s Signature) MarshalJSON() ([]byte, error) {
return json.Marshal(s.String())
}
// UnmarshalJSON implements the method for the json.Unmarshaler interface
func (s *Signature) UnmarshalJSON(b []byte) error {
var str string
if err := json.Unmarshal(b, &str); err != nil {
return err
}
return s.UnmarshalText([]byte(str))
}
// returns an io.Reader which will first read out information about the
// Signature which is going to be generated for the data, and then the data from
// the io.Reader itself. When used in conjunction with the Signer/Verifier's
// hashing algorithm this ensures that the other data encoded in the Signature
// (the time and salt) are also encompassed in the sig.
func sigPrefixReader(r io.Reader, sigLen uint8, salt []byte, t time.Time) io.Reader {
// ts:8 + saltHeader:1 + salt + sigLen:1
b := make([]byte, 10+len(salt))
binary.BigEndian.PutUint64(b, uint64(t.UnixNano()))
b[9] = uint8(len(salt))
copy(b[9:9+len(salt)], salt)
b[9+len(salt)] = sigLen
return io.MultiReader(bytes.NewBuffer(b), r)
}
////////////////////////////////////////////////////////////////////////////////
// Signer is some entity which can generate signatures for arbitrary data and // Signer is some entity which can generate signatures for arbitrary data and
// can later verify those signatures // can later verify those signatures
type Signer interface { type Signer interface {
sign(io.Reader) (string, error) sign(io.Reader) (Signature, error)
}
// returns an error if io.Reader returns one ever, or if the signature // Verifier is some entity which can verify Signatures produced by a Signer for
// some arbitrary data
type Verifier interface {
// returns an error if io.Reader returns one ever, or if the Signature
// couldn't be verified // couldn't be verified
verify(string, io.Reader) error verify(Signature, io.Reader) error
} }
// Sign reads all data from the io.Reader and signs it using the given Signer // Sign reads all data from the io.Reader and signs it using the given Signer
func Sign(s Signer, r io.Reader) (string, error) { func Sign(s Signer, r io.Reader) (Signature, error) {
return s.sign(r) return s.sign(r)
} }
// SignBytes uses the Signer to generate a signature for the given []bytes // SignBytes uses the Signer to generate a Signature for the given []bytes
func SignBytes(s Signer, b []byte) string { func SignBytes(s Signer, b []byte) Signature {
sig, err := s.sign(bytes.NewBuffer(b)) sig, err := s.sign(bytes.NewBuffer(b))
if err != nil { if err != nil {
panic(err) panic(err)
@ -49,219 +156,104 @@ func SignBytes(s Signer, b []byte) string {
return sig return sig
} }
// SignString uses the Signer to generate a signature for the given string // SignString uses the Signer to generate a Signature for the given string
func SignString(s Signer, in string) string { func SignString(s Signer, in string) Signature {
return SignBytes(s, []byte(in)) return SignBytes(s, []byte(in))
} }
// Verify reads all data from the io.Reader and uses the Signer to verify that // Verify reads all data from the io.Reader and uses the Verifier to verify that
// the signature is for that data. // the Signature is for that data.
// //
// Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err, // Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err,
// mcrypto.ErrInvalidSig) to check). // mcrypto.ErrInvalidSig) to check).
func Verify(s Signer, sig string, r io.Reader) error { func Verify(v Verifier, s Signature, r io.Reader) error {
return s.verify(sig, r) return v.verify(s, r)
} }
// VerifyBytes uses the Signer to verify that the signature is for the given // VerifyBytes uses the Verifier to verify that the Signature is for the given
// []bytes. // []bytes.
// //
// Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err, // Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err,
// mcrypto.ErrInvalidSig) to check). // mcrypto.ErrInvalidSig) to check).
func VerifyBytes(s Signer, sig string, b []byte) error { func VerifyBytes(v Verifier, s Signature, b []byte) error {
return s.verify(sig, bytes.NewBuffer(b)) return v.verify(s, bytes.NewBuffer(b))
} }
// VerifyString uses the Signer to verify that the signature is for the given // VerifyString uses the Verifier to verify that the Signature is for the given
// string. // string.
// //
// Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err, // Returns any errors from io.Reader, or ErrInvalidSig (use merry.Is(err,
// mcrypto.ErrInvalidSig) to check). // mcrypto.ErrInvalidSig) to check).
func VerifyString(s Signer, sig, in string) error { func VerifyString(v Verifier, s Signature, in string) error {
return VerifyBytes(s, sig, []byte(in)) return VerifyBytes(v, s, []byte(in))
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
type signer struct { type signVerifier struct {
outSize uint8 // in bytes, shouldn't be more than 32, cause sha256 outSize uint8 // in bytes, shouldn't be more than 32, cause sha256
secret []byte secret []byte
}
// NewSigner returns a Signer instance which will use the given secret to sign
// and verify all signatures. The signatures generated by this Signer have no
// expiration
func NewSigner(secret []byte) Signer {
return signer{outSize: 20, secret: secret}
}
// NewWeakSigner returns a Signer, similar to how NewSigner does. The signatures
// generated by this Signer will be smaller in text size, and therefore weaker,
// but are still fine for most applications.
//
// The Signers returned by both NewSigner and NewWeakSigner can verify
// each-other's signatures, as long as the secret is the same.
func NewWeakSigner(secret []byte) Signer {
return signer{outSize: 8, secret: secret}
}
func (s signer) signRaw(r io.Reader) (hash.Hash, error) {
h := hmac.New(sha256.New, s.secret)
_, err := io.Copy(h, r)
return h, err
}
func (s signer) sign(r io.Reader) (string, error) {
h, err := s.signRaw(r)
if err != nil {
return "", err
}
b := make([]byte, 1+h.Size())
b[0] = s.outSize
h.Sum(b[1:1])
return sigV0 + hex.EncodeToString(b[:1+int(s.outSize)]), nil
}
func (s signer) verify(sig string, r io.Reader) error {
sig, ok := stripPrefix(sig, sigV0)
if !ok || len(sig) < 2 {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sig": sig})
}
sig = strings.TrimPrefix(sig, sigV0)
sizeStr, sig := sig[:2], sig[2:]
sizeB, err := hex.DecodeString(sizeStr)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig})
}
size := sizeB[0]
if hex.DecodedLen(len(sig)) != int(size) {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sig": sig})
}
sigB, err := hex.DecodeString(sig)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig})
}
h, err := s.signRaw(r)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig})
}
if !hmac.Equal(sigB, h.Sum(nil)[:size]) {
return mlog.ErrWithKV(ErrInvalidSig, mlog.KV{"sig": sig})
}
return nil
}
////////////////////////////////////////////////////////////////////////////////
type expireSigner struct {
s Signer
timeout time.Duration
// only used during tests // only used during tests
testNow time.Time testNow time.Time
} }
// ExpireSigner wraps a Signer so that the signatures produced include timestamp // NewSignerVerifier returns Signer and Verifier instances which will use the
// information about when the signature was made. That information is then used // given secret to sign and verify all Signatures
// during verifying to ensure the signature isn't older than the timeout. func NewSignerVerifier(secret []byte) (Signer, Verifier) {
// sv := signVerifier{outSize: 20, secret: secret}
// It is allowed to change the timeout ExpireSigner is initialized with. return sv, sv
// Previously generated signatures will be verified (or rejected) using the new
// timeout.
func ExpireSigner(s Signer, timeout time.Duration) Signer {
return expireSigner{s: s, timeout: timeout}
} }
func (es expireSigner) now() time.Time { // NewWeakSignerVerifier returns Signer and Verifier instances, similar to how
if !es.testNow.IsZero() { // NewSignVerifier does. The Signatures generated by this Signer will be smaller
return es.testNow // in text size, and therefore weaker, but are still fine for most applications.
//
// The Verifiers returned by both NewSignVerifier and NewWeakSignVerifier can
// verify each-other's signatures, as long as the secret is the same.
func NewWeakSignerVerifier(secret []byte) (Signer, Verifier) {
sv := signVerifier{outSize: 8, secret: secret}
return sv, sv
}
func (sv signVerifier) now() time.Time {
if !sv.testNow.IsZero() {
return sv.testNow
} }
return time.Now() return time.Now()
} }
func (es expireSigner) sign(r io.Reader) (string, error) { func (sv signVerifier) signRaw(
b := make([]byte, 8) r io.Reader,
binary.BigEndian.PutUint64(b, uint64(es.now().UnixNano())) sigLen uint8, salt []byte, t time.Time,
sig, err := es.s.sign(prefixReader(r, b)) ) (
return exSigV0 + hex.EncodeToString(b) + sig, err []byte, error,
) {
h := hmac.New(sha256.New, sv.secret)
r = sigPrefixReader(r, sigLen, salt, t)
if _, err := io.Copy(h, r); err != nil {
return nil, err
}
return h.Sum(nil)[:sigLen], nil
} }
var exSigTimeLen = hex.EncodedLen(8) func (sv signVerifier) sign(r io.Reader) (Signature, error) {
salt := make([]byte, 8)
func (es expireSigner) verify(sig string, r io.Reader) error { if _, err := rand.Read(salt); err != nil {
sig, ok := stripPrefix(sig, exSigV0)
if !ok || len(sig) < exSigTimeLen {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sig": sig})
}
tStr, sig := sig[:exSigTimeLen], sig[exSigTimeLen:]
tB, err := hex.DecodeString(tStr)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig})
}
t := time.Unix(0, int64(binary.BigEndian.Uint64(tB)))
if es.now().Sub(t) > es.timeout {
return mlog.ErrWithKV(ErrInvalidSig, mlog.KV{"sig": sig})
}
return es.s.verify(sig, prefixReader(r, tB))
}
////////////////////////////////////////////////////////////////////////////////
type uniqueSigner struct {
s Signer
randSize uint8 // in bytes
}
// UniqueSigner wraps a Signer so that when data is signed some random data is
// included in the signed data, and that random data is included in the
// signature as well. This ensures that even for the same input data signatures
// produced are all unique.
func UniqueSigner(s Signer) Signer {
return uniqueSigner{s: s, randSize: 10}
}
func (us uniqueSigner) sign(r io.Reader) (string, error) {
b := make([]byte, 1+us.randSize)
b[0] = us.randSize
if _, err := rand.Read(b[1:]); err != nil {
panic(err) panic(err)
} }
sig, err := us.s.sign(prefixReader(r, b[1:]))
return uniqueSigV0 + hex.EncodeToString(b) + sig, err t := sv.now()
sig, err := sv.signRaw(r, sv.outSize, salt, t)
return Signature{sig: sig, salt: salt, t: t}, err
} }
func (us uniqueSigner) verify(sig string, r io.Reader) error { func (sv signVerifier) verify(s Signature, r io.Reader) error {
sig, ok := stripPrefix(sig, uniqueSigV0) sig, err := sv.signRaw(r, uint8(len(s.sig)), s.salt, s.t)
if !ok || len(sig) < 2 {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sig": sig})
}
sizeStr, sig := sig[:2], sig[2:]
sizeB, err := hex.DecodeString(sizeStr)
if err != nil { if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig}) return mlog.ErrWithKV(err, s)
} else if !hmac.Equal(sig, s.sig) {
return mlog.ErrWithKV(ErrInvalidSig, s)
} }
return nil
size := sizeB[0]
sizeEnc := hex.EncodedLen(int(size))
if len(sig) < sizeEnc {
return mlog.ErrWithKV(errMalformedSig, mlog.KV{"sig": sig})
}
bStr, sig := sig[:sizeEnc], sig[sizeEnc:]
b, err := hex.DecodeString(bStr)
if err != nil {
return mlog.ErrWithKV(err, mlog.KV{"sig": sig})
}
return us.s.verify(sig, prefixReader(r, b))
} }

View File

@ -9,31 +9,55 @@ import (
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
func TestSigner(t *T) { func TestSignerVerifier(t *T) {
secret := mtest.RandBytes(16) secret := mtest.RandBytes(16)
signer, weakSigner := NewSigner(secret), NewWeakSigner(secret) sigI, ver := NewSignerVerifier(secret)
var prevStr, prevSig, prevWeakSig string sig := sigI.(signVerifier)
weakSigI, weakVer := NewWeakSignerVerifier(secret)
weakSig := weakSigI.(signVerifier)
var prevStr string
var prevSig, prevWeakSig Signature
for i := 0; i < 10000; i++ { for i := 0; i < 10000; i++ {
now := time.Now().Round(0)
sig.testNow = now
weakSig.testNow = now
thisStr := mtest.RandHex(512) thisStr := mtest.RandHex(512)
thisSig := SignString(signer, thisStr) thisSig := SignString(sig, thisStr)
thisWeakSig := SignString(weakSigner, thisStr) thisWeakSig := SignString(weakSig, thisStr)
thisSigStr, thisWeakSigStr := thisSig.String(), thisWeakSig.String()
// checking the times made it
assert.Equal(t, now, thisSig.Time())
assert.Equal(t, now, thisWeakSig.Time())
// sanity checks // sanity checks
assert.NotEqual(t, thisSig, thisWeakSig) assert.NotEmpty(t, thisSigStr)
assert.True(t, len(thisSig) > len(thisWeakSig)) assert.NotEmpty(t, thisWeakSigStr)
assert.NotEqual(t, thisSigStr, thisWeakSigStr)
assert.True(t, len(thisSigStr) > len(thisWeakSigStr))
// Either signer should be able to verify either signature // marshaling/unmarshaling
assert.NoError(t, VerifyString(signer, thisSig, thisStr)) var thisSig2, thisWeakSig2 Signature
assert.NoError(t, VerifyString(weakSigner, thisWeakSig, thisStr)) assert.NoError(t, thisSig2.UnmarshalText([]byte(thisSigStr)))
assert.NoError(t, VerifyString(signer, thisWeakSig, thisStr)) assert.Equal(t, thisSigStr, thisSig2.String())
assert.NoError(t, VerifyString(weakSigner, thisSig, thisStr)) assert.NoError(t, thisWeakSig2.UnmarshalText([]byte(thisWeakSigStr)))
assert.Equal(t, thisWeakSigStr, thisWeakSig2.String())
assert.Equal(t, now, thisSig2.Time())
assert.Equal(t, now, thisWeakSig2.Time())
// Either sigVer should be able to verify either signature
assert.NoError(t, VerifyString(ver, thisSig, thisStr))
assert.NoError(t, VerifyString(weakVer, thisWeakSig, thisStr))
assert.NoError(t, VerifyString(ver, thisWeakSig, thisStr))
assert.NoError(t, VerifyString(weakVer, thisSig, thisStr))
if prevStr != "" { if prevStr != "" {
assert.NotEqual(t, prevSig, thisSig) assert.NotEqual(t, prevSig.String(), thisSigStr)
assert.NotEqual(t, prevWeakSig, thisWeakSig) assert.NotEqual(t, prevWeakSig.String(), thisWeakSigStr)
err := VerifyString(signer, prevSig, thisStr) err := VerifyString(ver, prevSig, thisStr)
assert.True(t, merry.Is(err, ErrInvalidSig)) assert.True(t, merry.Is(err, ErrInvalidSig))
err = VerifyString(signer, prevWeakSig, thisStr) err = VerifyString(ver, prevWeakSig, thisStr)
assert.True(t, merry.Is(err, ErrInvalidSig)) assert.True(t, merry.Is(err, ErrInvalidSig))
} }
prevStr = thisStr prevStr = thisStr
@ -41,40 +65,3 @@ func TestSigner(t *T) {
prevWeakSig = thisWeakSig prevWeakSig = thisWeakSig
} }
} }
func TestExpireSigner(t *T) {
origNow := time.Now()
s := ExpireSigner(NewSigner(mtest.RandBytes(16)), 1*time.Hour).(expireSigner)
s.testNow = origNow
str := mtest.RandHex(32)
sig := SignString(s, str)
// in the immediate the sig should obviously work
assert.NoError(t, VerifyString(s, sig, str))
err := VerifyString(s, sig, mtest.RandHex(32))
assert.True(t, merry.Is(err, ErrInvalidSig))
// within the timeout it should still work
s.testNow = s.testNow.Add(1 * time.Minute)
assert.NoError(t, VerifyString(s, sig, str))
// but a new "now" should then generate a different sig
sig2 := SignString(s, str)
assert.NotEqual(t, sig, sig2)
assert.NoError(t, VerifyString(s, sig2, str))
// jumping forward an hour should expire the first sig, but not the second
s.testNow = s.testNow.Add(1 * time.Hour)
err = VerifyString(s, sig, str)
assert.True(t, merry.Is(err, ErrInvalidSig))
assert.NoError(t, VerifyString(s, sig2, str))
}
func TestUniqueSigner(t *T) {
s := UniqueSigner(NewSigner(mtest.RandBytes(16)))
str := mtest.RandHex(32)
sigA, sigB := SignString(s, str), SignString(s, str)
assert.NotEqual(t, sigA, sigB)
assert.NoError(t, VerifyString(s, sigA, str))
assert.NoError(t, VerifyString(s, sigB, str))
}

View File

@ -78,8 +78,7 @@ func (u UUID) MarshalText() ([]byte, error) {
// interface // interface
func (u *UUID) UnmarshalText(b []byte) error { func (u *UUID) UnmarshalText(b []byte) error {
if !bytes.HasPrefix(b, []byte(uuidV0)) || len(b) != len(uuidV0)+32 { if !bytes.HasPrefix(b, []byte(uuidV0)) || len(b) != len(uuidV0)+32 {
err := errors.New("malformed uuid string") return mlog.ErrWithKV(errMalformedUUID, mlog.KV{"uuidStr": string(b)})
return mlog.ErrWithKV(err, mlog.KV{"uuidStr": string(b)})
} }
u.str = string(b) u.str = string(b)
return nil return nil