416 lines
13 KiB
Rust
416 lines
13 KiB
Rust
//! This module deals with graph algorithms.
|
|
//! It is used in layout.rs to build the partition to node assignment.
|
|
|
|
use rand::prelude::{SeedableRng, SliceRandom};
|
|
use std::cmp::{max, min};
|
|
use std::collections::HashMap;
|
|
use std::collections::VecDeque;
|
|
|
|
/// Vertex data structures used in all the graphs used in layout.rs.
|
|
/// usize parameters correspond to node/zone/partitions ids.
|
|
/// To understand the vertex roles below, please refer to the formal description
|
|
/// of the layout computation algorithm.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum Vertex {
|
|
Source,
|
|
Pup(usize), // The vertex p+ of partition p
|
|
Pdown(usize), // The vertex p- of partition p
|
|
PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z)
|
|
N(usize), // The vertex corresponding to node n
|
|
Sink,
|
|
}
|
|
|
|
/// Edge data structure for the flow algorithm.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct FlowEdge {
|
|
cap: u64, // flow maximal capacity of the edge
|
|
flow: i64, // flow value on the edge
|
|
dest: usize, // destination vertex id
|
|
rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v
|
|
}
|
|
|
|
/// Edge data structure for the detection of negative cycles.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct WeightedEdge {
|
|
w: i64, // weight of the edge
|
|
dest: usize,
|
|
}
|
|
|
|
pub trait Edge: Clone + Copy {}
|
|
impl Edge for FlowEdge {}
|
|
impl Edge for WeightedEdge {}
|
|
|
|
/// Struct for the graph structure. We do encapsulation here to be able to both
|
|
/// provide user friendly Vertex enum to address vertices, and to use internally usize
|
|
/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed.
|
|
pub struct Graph<E: Edge> {
|
|
vertex_to_id: HashMap<Vertex, usize>,
|
|
id_to_vertex: Vec<Vertex>,
|
|
|
|
// The graph is stored as an adjacency list
|
|
graph: Vec<Vec<E>>,
|
|
}
|
|
|
|
pub type CostFunction = HashMap<(Vertex, Vertex), i64>;
|
|
|
|
impl<E: Edge> Graph<E> {
|
|
pub fn new(vertices: &[Vertex]) -> Self {
|
|
let mut map = HashMap::<Vertex, usize>::new();
|
|
for (i, vert) in vertices.iter().enumerate() {
|
|
map.insert(*vert, i);
|
|
}
|
|
Graph::<E> {
|
|
vertex_to_id: map,
|
|
id_to_vertex: vertices.to_vec(),
|
|
graph: vec![Vec::<E>::new(); vertices.len()],
|
|
}
|
|
}
|
|
|
|
fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> {
|
|
self.vertex_to_id
|
|
.get(v)
|
|
.cloned()
|
|
.ok_or_else(|| format!("The graph does not contain vertex {:?}", v))
|
|
}
|
|
}
|
|
|
|
impl Graph<FlowEdge> {
|
|
/// This function adds a directed edge to the graph with capacity c, and the
|
|
/// corresponding reversed edge with capacity 0.
|
|
pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u64) -> Result<(), String> {
|
|
let idu = self.get_vertex_id(&u)?;
|
|
let idv = self.get_vertex_id(&v)?;
|
|
if idu == idv {
|
|
return Err("Cannot add edge from vertex to itself in flow graph".into());
|
|
}
|
|
|
|
let rev_u = self.graph[idu].len();
|
|
let rev_v = self.graph[idv].len();
|
|
self.graph[idu].push(FlowEdge {
|
|
cap: c,
|
|
dest: idv,
|
|
flow: 0,
|
|
rev: rev_v,
|
|
});
|
|
self.graph[idv].push(FlowEdge {
|
|
cap: 0,
|
|
dest: idu,
|
|
flow: 0,
|
|
rev: rev_u,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
/// This function returns the list of vertices that receive a positive flow from
|
|
/// vertex v.
|
|
pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
|
|
let idv = self.get_vertex_id(&v)?;
|
|
let mut result = Vec::<Vertex>::new();
|
|
for edge in self.graph[idv].iter() {
|
|
if edge.flow > 0 {
|
|
result.push(self.id_to_vertex[edge.dest]);
|
|
}
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
/// This function returns the value of the flow incoming to v.
|
|
pub fn get_inflow(&self, v: Vertex) -> Result<i64, String> {
|
|
let idv = self.get_vertex_id(&v)?;
|
|
let mut result = 0;
|
|
for edge in self.graph[idv].iter() {
|
|
result += max(0, self.graph[edge.dest][edge.rev].flow);
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
/// This function returns the value of the flow outgoing from v.
|
|
pub fn get_outflow(&self, v: Vertex) -> Result<i64, String> {
|
|
let idv = self.get_vertex_id(&v)?;
|
|
let mut result = 0;
|
|
for edge in self.graph[idv].iter() {
|
|
result += max(0, edge.flow);
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
/// This function computes the flow total value by computing the outgoing flow
|
|
/// from the source.
|
|
pub fn get_flow_value(&mut self) -> Result<i64, String> {
|
|
self.get_outflow(Vertex::Source)
|
|
}
|
|
|
|
/// This function shuffles the order of the edge lists. It keeps the ids of the
|
|
/// reversed edges consistent.
|
|
fn shuffle_edges(&mut self) {
|
|
// We use deterministic randomness so that the layout calculation algorihtm
|
|
// will output the same thing every time it is run. This way, the results
|
|
// pre-calculated in `garage layout show` will match exactly those used
|
|
// in practice with `garage layout apply`
|
|
let mut rng = rand::rngs::StdRng::from_seed([0x12u8; 32]);
|
|
for i in 0..self.graph.len() {
|
|
self.graph[i].shuffle(&mut rng);
|
|
// We need to update the ids of the reverse edges.
|
|
for j in 0..self.graph[i].len() {
|
|
let target_v = self.graph[i][j].dest;
|
|
let target_rev = self.graph[i][j].rev;
|
|
self.graph[target_v][target_rev].rev = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Computes an upper bound of the flow on the graph
|
|
pub fn flow_upper_bound(&self) -> Result<u64, String> {
|
|
let idsource = self.get_vertex_id(&Vertex::Source)?;
|
|
let mut flow_upper_bound = 0;
|
|
for edge in self.graph[idsource].iter() {
|
|
flow_upper_bound += edge.cap;
|
|
}
|
|
Ok(flow_upper_bound)
|
|
}
|
|
|
|
/// This function computes the maximal flow using Dinic's algorithm. It starts with
|
|
/// the flow values already present in the graph. So it is possible to add some edge to
|
|
/// the graph, compute a flow, add other edges, update the flow.
|
|
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
|
|
let idsource = self.get_vertex_id(&Vertex::Source)?;
|
|
let idsink = self.get_vertex_id(&Vertex::Sink)?;
|
|
|
|
let nb_vertices = self.graph.len();
|
|
|
|
let flow_upper_bound = self.flow_upper_bound()?;
|
|
|
|
// To ensure the dispersion of the associations generated by the
|
|
// assignment, we shuffle the neighbours of the nodes. Hence,
|
|
// the vertices do not consider their neighbours in the same order.
|
|
self.shuffle_edges();
|
|
|
|
// We run Dinic's max flow algorithm
|
|
loop {
|
|
// We build the level array from Dinic's algorithm.
|
|
let mut level = vec![None; nb_vertices];
|
|
|
|
let mut fifo = VecDeque::new();
|
|
fifo.push_back((idsource, 0));
|
|
while let Some((id, lvl)) = fifo.pop_front() {
|
|
if level[id].is_none() {
|
|
// it means id has not yet been reached
|
|
level[id] = Some(lvl);
|
|
for edge in self.graph[id].iter() {
|
|
if edge.cap as i64 - edge.flow > 0 {
|
|
fifo.push_back((edge.dest, lvl + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if level[idsink].is_none() {
|
|
// There is no residual flow
|
|
break;
|
|
}
|
|
// Now we run DFS respecting the level array
|
|
let mut next_nbd = vec![0; nb_vertices];
|
|
let mut lifo = Vec::new();
|
|
|
|
lifo.push((idsource, flow_upper_bound));
|
|
|
|
while let Some((id, f)) = lifo.last().cloned() {
|
|
if id == idsink {
|
|
// The DFS reached the sink, we can add a
|
|
// residual flow.
|
|
lifo.pop();
|
|
while let Some((id, _)) = lifo.pop() {
|
|
let nbd = next_nbd[id];
|
|
self.graph[id][nbd].flow += f as i64;
|
|
let id_rev = self.graph[id][nbd].dest;
|
|
let nbd_rev = self.graph[id][nbd].rev;
|
|
self.graph[id_rev][nbd_rev].flow -= f as i64;
|
|
}
|
|
lifo.push((idsource, flow_upper_bound));
|
|
continue;
|
|
}
|
|
// else we did not reach the sink
|
|
let nbd = next_nbd[id];
|
|
if nbd >= self.graph[id].len() {
|
|
// There is nothing to explore from id anymore
|
|
lifo.pop();
|
|
if let Some((parent, _)) = lifo.last() {
|
|
next_nbd[*parent] += 1;
|
|
}
|
|
continue;
|
|
}
|
|
// else we can try to send flow from id to its nbd
|
|
let new_flow = min(
|
|
f as i64,
|
|
self.graph[id][nbd].cap as i64 - self.graph[id][nbd].flow,
|
|
) as u64;
|
|
if new_flow == 0 {
|
|
next_nbd[id] += 1;
|
|
continue;
|
|
}
|
|
if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
|
|
if lvldest <= lvlid {
|
|
// We cannot send flow to nbd.
|
|
next_nbd[id] += 1;
|
|
continue;
|
|
}
|
|
}
|
|
// otherwise, we send flow to nbd.
|
|
lifo.push((self.graph[id][nbd].dest, new_flow));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// This function takes a flow, and a cost function on the edges, and tries to find an
|
|
/// equivalent flow with a better cost, by finding improving overflow cycles. It uses
|
|
/// as subroutine the Bellman Ford algorithm run up to path_length.
|
|
/// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and
|
|
/// only one needs to be present in the cost function.
|
|
pub fn optimize_flow_with_cost(
|
|
&mut self,
|
|
cost: &CostFunction,
|
|
path_length: usize,
|
|
) -> Result<(), String> {
|
|
// We build the weighted graph g where we will look for negative cycle
|
|
let mut gf = self.build_cost_graph(cost)?;
|
|
let mut cycles = gf.list_negative_cycles(path_length);
|
|
while !cycles.is_empty() {
|
|
// we enumerate negative cycles
|
|
for c in cycles.iter() {
|
|
for i in 0..c.len() {
|
|
// We add one flow unit to the edge (u,v) of cycle c
|
|
let idu = self.vertex_to_id[&c[i]];
|
|
let idv = self.vertex_to_id[&c[(i + 1) % c.len()]];
|
|
for j in 0..self.graph[idu].len() {
|
|
// since idu appears at most once in the cycles, we enumerate every
|
|
// edge at most once.
|
|
let edge = self.graph[idu][j];
|
|
if edge.dest == idv {
|
|
self.graph[idu][j].flow += 1;
|
|
self.graph[idv][edge.rev].flow -= 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gf = self.build_cost_graph(cost)?;
|
|
cycles = gf.list_negative_cycles(path_length);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Construct the weighted graph G_f from the flow and the cost function
|
|
fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
|
|
let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex);
|
|
let nb_vertices = self.id_to_vertex.len();
|
|
for i in 0..nb_vertices {
|
|
for edge in self.graph[i].iter() {
|
|
if edge.cap as i64 - edge.flow > 0 {
|
|
// It is possible to send overflow through this edge
|
|
let u = self.id_to_vertex[i];
|
|
let v = self.id_to_vertex[edge.dest];
|
|
if cost.contains_key(&(u, v)) {
|
|
g.add_edge(u, v, cost[&(u, v)])?;
|
|
} else if cost.contains_key(&(v, u)) {
|
|
g.add_edge(u, v, -cost[&(v, u)])?;
|
|
} else {
|
|
g.add_edge(u, v, 0)?;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(g)
|
|
}
|
|
}
|
|
|
|
impl Graph<WeightedEdge> {
|
|
/// This function adds a single directed weighted edge to the graph.
|
|
pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i64) -> Result<(), String> {
|
|
let idu = self.get_vertex_id(&u)?;
|
|
let idv = self.get_vertex_id(&v)?;
|
|
self.graph[idu].push(WeightedEdge { w, dest: idv });
|
|
Ok(())
|
|
}
|
|
|
|
/// This function lists the negative cycles it manages to find after path_length
|
|
/// iterations of the main loop of the Bellman-Ford algorithm. For the classical
|
|
/// algorithm, path_length needs to be equal to the number of vertices. However,
|
|
/// for particular graph structures like in our case, the algorithm is still correct
|
|
/// when path_length is the length of the longest possible simple path.
|
|
/// See the formal description of the algorithm for more details.
|
|
fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
|
|
let nb_vertices = self.graph.len();
|
|
|
|
// We start with every vertex at distance 0 of some imaginary extra -1 vertex.
|
|
let mut distance = vec![0; nb_vertices];
|
|
// The prev vector collects for every vertex from where does the shortest path come
|
|
let mut prev = vec![None; nb_vertices];
|
|
|
|
for _ in 0..path_length + 1 {
|
|
for id in 0..nb_vertices {
|
|
for e in self.graph[id].iter() {
|
|
if distance[id] + e.w < distance[e.dest] {
|
|
distance[e.dest] = distance[id] + e.w;
|
|
prev[e.dest] = Some(id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If self.graph contains a negative cycle, then at this point the graph described
|
|
// by prev (which is a directed 1-forest/functional graph)
|
|
// must contain a cycle. We list the cycles of prev.
|
|
let cycles_prev = cycles_of_1_forest(&prev);
|
|
|
|
// Remark that the cycle in prev is in the reverse order compared to the cycle
|
|
// in the graph. Thus the .rev().
|
|
return cycles_prev
|
|
.iter()
|
|
.map(|cycle| {
|
|
cycle
|
|
.iter()
|
|
.rev()
|
|
.map(|id| self.id_to_vertex[*id])
|
|
.collect()
|
|
})
|
|
.collect();
|
|
}
|
|
}
|
|
|
|
/// This function returns the list of cycles of a directed 1 forest. It does not
|
|
/// check for the consistency of the input.
|
|
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
|
let mut cycles = Vec::<Vec<usize>>::new();
|
|
let mut time_of_discovery = vec![None; forest.len()];
|
|
|
|
for t in 0..forest.len() {
|
|
let mut id = t;
|
|
// while we are on a valid undiscovered node
|
|
while time_of_discovery[id].is_none() {
|
|
time_of_discovery[id] = Some(t);
|
|
if let Some(i) = forest[id] {
|
|
id = i;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if forest[id].is_some() && time_of_discovery[id] == Some(t) {
|
|
// We discovered an id that we explored at this iteration t.
|
|
// It means we are on a cycle
|
|
let mut cy = vec![id; 1];
|
|
let mut id2 = id;
|
|
while let Some(id_next) = forest[id2] {
|
|
id2 = id_next;
|
|
if id2 != id {
|
|
cy.push(id2);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
cycles.push(cy);
|
|
}
|
|
}
|
|
cycles
|
|
}
|