ginger/graph/graph.go

460 lines
11 KiB
Go
Raw Normal View History

// Package graph implements an immutable unidirectional graph.
package graph
import (
"crypto/rand"
"encoding/hex"
"fmt"
2018-08-21 21:29:01 +00:00
"sort"
"strings"
)
// Value wraps a go value in a way such that it will be uniquely identified
// within any Graph and between Graphs. Use NewValue to create a Value instance.
// You can create an instance manually as long as ID is globally unique.
type Value struct {
ID string
V interface{}
}
// Void is the absence of any value.
var Void Value
// NewValue returns a Value instance wrapping any go value. The Value returned
// will be independent of the passed in go value. So if the same go value is
// passed in twice then the two returned Value instances will be treated as
// being different values by Graph.
func NewValue(V interface{}) Value {
b := make([]byte, 8)
if _, err := rand.Read(b); err != nil {
panic(err)
}
return Value{
ID: hex.EncodeToString(b),
V: V,
}
}
// Edge is a directional edge connecting two values in a Graph, the Tail and the
// Head.
2018-10-04 19:24:17 +00:00
type Edge interface {
Tail() Value // The Value the Edge is coming from
Head() Value // The Value the Edge is going to
}
2018-10-04 19:24:17 +00:00
func edgeID(e Edge) string {
return fmt.Sprintf("%q->%q", e.Tail().ID, e.Head().ID)
}
type edge struct {
tail, head Value
}
// NewEdge constructs and returns an Edge running from tail to head.
func NewEdge(tail, head Value) Edge {
return edge{tail, head}
}
func (e edge) Tail() Value {
return e.tail
}
func (e edge) Head() Value {
return e.head
}
// an edgeIndex maps valueIDs to a set of edgeIDs. Graph keeps two edgeIndex's,
// one for input edges and one for output edges.
type edgeIndex map[string]map[string]struct{}
func (ei edgeIndex) cp() edgeIndex {
if ei == nil {
return edgeIndex{}
}
ei2 := make(edgeIndex, len(ei))
for valID, edgesM := range ei {
edgesM2 := make(map[string]struct{}, len(edgesM))
for id := range edgesM {
edgesM2[id] = struct{}{}
}
ei2[valID] = edgesM2
}
return ei2
}
func (ei edgeIndex) add(valID, edgeID string) {
edgesM, ok := ei[valID]
if !ok {
edgesM = map[string]struct{}{}
ei[valID] = edgesM
}
edgesM[edgeID] = struct{}{}
}
func (ei edgeIndex) del(valID, edgeID string) {
edgesM, ok := ei[valID]
if !ok {
return
}
delete(edgesM, edgeID)
if len(edgesM) == 0 {
delete(ei, valID)
}
}
// Graph implements an immutable, unidirectional graph which can hold generic
// values. All methods are thread-safe as they don't modify the Graph in any
// way.
//
// The Graph's zero value is the initial empty graph.
//
// The Graph does not keep track of Edge ordering. Assume that all slices of
// Edges are in random order.
type Graph struct {
m map[string]Edge
// these are indices mapping Value IDs to all the in/out edges for that
// Value in the Graph.
vIns, vOuts edgeIndex
}
func (g Graph) cp() Graph {
g2 := Graph{
m: make(map[string]Edge, len(g.m)),
vIns: g.vIns.cp(),
vOuts: g.vOuts.cp(),
}
for id, e := range g.m {
g2.m[id] = e
}
return g2
}
2018-08-21 21:29:01 +00:00
func (g Graph) String() string {
edgeIDs := make([]string, 0, len(g.m))
for edgeID := range g.m {
edgeIDs = append(edgeIDs, edgeID)
}
sort.Strings(edgeIDs)
return "Graph{" + strings.Join(edgeIDs, ",") + "}"
}
2018-08-21 18:46:17 +00:00
// Add returns a new Graph instance with the given Edge added to it. If the
// original Graph already had that Edge this returns the original Graph.
2018-08-21 18:46:17 +00:00
func (g Graph) Add(e Edge) Graph {
2018-10-04 19:24:17 +00:00
id := edgeID(e)
if _, ok := g.m[id]; ok {
return g
}
g2 := g.cp()
2018-08-21 21:29:01 +00:00
g2.addDirty(id, e)
return g2
}
2018-08-21 21:29:01 +00:00
func (g Graph) addDirty(edgeID string, e Edge) {
g.m[edgeID] = e
2018-10-04 19:24:17 +00:00
g.vIns.add(e.Head().ID, edgeID)
g.vOuts.add(e.Tail().ID, edgeID)
2018-08-21 21:29:01 +00:00
}
func (g Graph) estSize() int {
lvIns := len(g.vIns)
lvOuts := len(g.vOuts)
if lvIns > lvOuts {
return lvIns
}
return lvOuts
}
2018-08-21 18:46:17 +00:00
// Del returns a new Graph instance without the given Edge in it. If the
// original Graph didn't have that Edge this returns the original Graph.
func (g Graph) Del(e Edge) Graph {
2018-10-04 19:24:17 +00:00
id := edgeID(e)
if _, ok := g.m[id]; !ok {
return g
}
g2 := g.cp()
delete(g2.m, id)
2018-10-04 19:24:17 +00:00
g2.vIns.del(e.Head().ID, id)
g2.vOuts.del(e.Tail().ID, id)
return g2
}
2018-08-21 21:29:01 +00:00
// Disjoin looks at the whole Graph and returns all sub-graphs of it which don't
// share any Edges between each other.
func (g Graph) Disjoin() []Graph {
valM := make(map[string]*Graph, len(g.vOuts))
graphForEdge := func(edge Edge) *Graph {
2018-10-04 19:24:17 +00:00
headGraph := valM[edge.Head().ID]
tailGraph := valM[edge.Tail().ID]
2018-08-21 21:29:01 +00:00
if headGraph == nil && tailGraph == nil {
newGraph := Graph{}.cp() // cp also initializes
return &newGraph
} else if headGraph == nil && tailGraph != nil {
return tailGraph
} else if headGraph != nil && tailGraph == nil {
return headGraph
} else if headGraph == tailGraph {
return headGraph // doesn't matter which is returned
}
// the two values are part of different graphs, join the smaller into
// the larger and change all values which were pointing to it to point
// into the larger (which will then be the join of them)
if len(tailGraph.m) > len(headGraph.m) {
tailGraph, headGraph = headGraph, tailGraph
}
for edgeID, edge := range tailGraph.m {
(*headGraph).addDirty(edgeID, edge)
}
for valID, valGraph := range valM {
if valGraph == tailGraph {
valM[valID] = headGraph
}
}
return headGraph
}
for edgeID, edge := range g.m {
graph := graphForEdge(edge)
(*graph).addDirty(edgeID, edge)
2018-10-04 19:24:17 +00:00
valM[edge.Head().ID] = graph
valM[edge.Tail().ID] = graph
2018-08-21 21:29:01 +00:00
}
found := map[*Graph]bool{}
graphs := make([]Graph, 0, len(valM))
for _, graph := range valM {
if found[graph] {
continue
}
found[graph] = true
graphs = append(graphs, *graph)
}
return graphs
}
// Join returns a new Graph which shares all Edges of this Graph and all given
// Graphs.
func (g Graph) Join(graphs ...Graph) Graph {
g2 := g.cp()
for _, graph := range graphs {
for edgeID, edge := range graph.m {
g2.addDirty(edgeID, edge)
}
}
return g2
}
// Edges returns all Edges which are part of the Graph
func (g Graph) Edges() []Edge {
edges := make([]Edge, 0, len(g.m))
for _, e := range g.m {
edges = append(edges, e)
}
return edges
}
2018-08-21 18:46:17 +00:00
// NOTE the Node type exists primarily for convenience. As far as Graph's
// internals are concerned it doesn't _really_ exist, and no Graph method should
// ever take Node as a parameter (except the callback functions like in
// Traverse, where it's not really being taken in).
// Node wraps a Value in a Graph to include that Node's input and output Edges
// in that Graph.
type Node struct {
Value
// All Edges in the Graph with this Node's Value as their Head and Tail,
// respectively. These should not be expected to be deterministic.
2018-08-21 18:46:17 +00:00
Ins, Outs []Edge
}
// Node returns the Node for the given Value, or false if the Graph doesn't
// contain the Value.
func (g Graph) Node(v Value) (Node, bool) {
n := Node{Value: v}
for edgeID := range g.vIns[v.ID] {
2018-08-21 18:46:17 +00:00
n.Ins = append(n.Ins, g.m[edgeID])
}
for edgeID := range g.vOuts[v.ID] {
2018-08-21 18:46:17 +00:00
n.Outs = append(n.Outs, g.m[edgeID])
}
return n, len(n.Ins) > 0 || len(n.Outs) > 0
}
// Nodes returns a Node for each Value which has at least one Edge in the Graph,
// with the Nodes mapped by their Value's ID.
func (g Graph) Nodes() map[string]Node {
nodesM := make(map[string]Node, len(g.m)*2)
for _, edge := range g.m {
// if head and tail are modified at the same time it messes up the case
// where they are the same node
{
2018-10-04 19:24:17 +00:00
headV := edge.Head()
head := nodesM[headV.ID]
head.Value = headV
2018-08-21 18:46:17 +00:00
head.Ins = append(head.Ins, edge)
nodesM[head.ID] = head
}
{
2018-10-04 19:24:17 +00:00
tailV := edge.Tail()
tail := nodesM[tailV.ID]
tail.Value = tailV
2018-08-21 18:46:17 +00:00
tail.Outs = append(tail.Outs, edge)
nodesM[tail.ID] = tail
}
}
2018-08-21 18:46:17 +00:00
return nodesM
}
// Has returns true if the Graph contains at least one Edge with a Head or Tail
// of Value.
func (g Graph) Has(v Value) bool {
if _, ok := g.vIns[v.ID]; ok {
return true
} else if _, ok := g.vOuts[v.ID]; ok {
return true
}
return false
}
// Traverse is used to traverse the Graph until a stopping point is reached.
2018-08-21 18:46:17 +00:00
// Traversal starts with the cursor at the given start Value. Each hop is
// performed by passing the cursor Value's Node into the next function. The
// cursor moves to the returned Value and next is called again, and so on.
//
// If the boolean returned from the next function is false traversal stops and
// this method returns.
//
// If start has no Edges in the Graph, or a Value returned from next doesn't,
2018-08-21 18:46:17 +00:00
// this will still call next, but the Node will be the zero value.
func (g Graph) Traverse(start Value, next func(n Node) (Value, bool)) {
curr := start
for {
2018-08-21 18:46:17 +00:00
currNode, ok := g.Node(curr)
if ok {
curr, ok = next(currNode)
} else {
curr, ok = next(Node{})
}
if !ok {
return
}
}
}
2018-08-18 17:51:38 +00:00
// VisitBreadth is like Traverse, except that each Node is only visited once,
// and the order of visited Nodes is determined by traversing each Node's output
// Edges breadth-wise.
//
// If the boolean returned from the callback function is false, or the start
// Value has no edges in the Graph, traversal stops and this method returns.
//
// The exact order of Nodes visited is _not_ deterministic.
func (g Graph) VisitBreadth(start Value, callback func(n Node) bool) {
visited := map[string]bool{}
toVisit := make([]Value, 0, g.estSize())
toVisit = append(toVisit, start)
for {
if len(toVisit) == 0 {
return
}
// shift val off front
val := toVisit[0]
toVisit = toVisit[1:]
if visited[val.ID] {
continue
}
node, ok := g.Node(val)
if !ok {
continue
} else if !callback(node) {
return
}
visited[val.ID] = true
for _, edge := range node.Outs {
2018-10-04 19:24:17 +00:00
headV := edge.Head()
if visited[headV.ID] {
continue
}
2018-10-04 19:24:17 +00:00
toVisit = append(toVisit, headV)
}
}
}
// VisitDepth is like Traverse, except that each Node is only visited once,
// and the order of visited Nodes is determined by traversing each Node's output
// Edges depth-wise.
//
// If the boolean returned from the callback function is false, or the start
// Value has no edges in the Graph, traversal stops and this method returns.
//
// The exact order of Nodes visited is _not_ deterministic.
func (g Graph) VisitDepth(start Value, callback func(n Node) bool) {
// VisitDepth is actually the same as VisitBreadth, only you read off the
// toVisit list from back-to-front
visited := map[string]bool{}
toVisit := make([]Value, 0, g.estSize())
toVisit = append(toVisit, start)
for {
if len(toVisit) == 0 {
return
}
val := toVisit[0]
toVisit = toVisit[:len(toVisit)-1] // pop val off back
if visited[val.ID] {
continue
}
node, ok := g.Node(val)
if !ok {
continue
} else if !callback(node) {
return
}
visited[val.ID] = true
for _, edge := range node.Outs {
2018-10-04 19:24:17 +00:00
if visited[edge.Head().ID] {
continue
}
2018-10-04 19:24:17 +00:00
toVisit = append(toVisit, edge.Head())
}
}
}
2018-08-21 21:29:01 +00:00
2018-08-18 17:51:38 +00:00
func (g Graph) edgesShared(g2 Graph) bool {
for id := range g2.m {
if _, ok := g.m[id]; !ok {
return false
}
}
return true
}
// SubGraph returns true if the given Graph shares all of its Edges with this
// Graph.
func (g Graph) SubGraph(g2 Graph) bool {
// as a quick check before iterating through the edges, if g has fewer edges
// than g2 then g2 can't possibly be a sub-graph of it
if len(g.m) < len(g2.m) {
return false
}
return g.edgesShared(g2)
}
// Equal returns true if the given Graph and this Graph have exactly the same
// Edges.
func (g Graph) Equal(g2 Graph) bool {
if len(g.m) != len(g2.m) {
return false
}
return g.edgesShared(g2)
}