339 lines
15 KiB
Markdown
339 lines
15 KiB
Markdown
+++
|
|
title = "Configuration file format"
|
|
weight = 5
|
|
+++
|
|
|
|
Here is an example `garage.toml` configuration file that illustrates all of the possible options:
|
|
|
|
```toml
|
|
metadata_dir = "/var/lib/garage/meta"
|
|
data_dir = "/var/lib/garage/data"
|
|
|
|
block_size = 1048576
|
|
|
|
replication_mode = "3"
|
|
|
|
compression_level = 1
|
|
|
|
rpc_secret = "4425f5c26c5e11581d3223904324dcb5b5d5dfb14e5e7f35e38c595424f5f1e6"
|
|
rpc_bind_addr = "[::]:3901"
|
|
rpc_public_addr = "[fc00:1::1]:3901"
|
|
|
|
bootstrap_peers = [
|
|
"563e1ac825ee3323aa441e72c26d1030d6d4414aeb3dd25287c531e7fc2bc95d@[fc00:1::1]:3901",
|
|
"86f0f26ae4afbd59aaf9cfb059eefac844951efd5b8caeec0d53f4ed6c85f332[fc00:1::2]:3901",
|
|
"681456ab91350f92242e80a531a3ec9392cb7c974f72640112f90a600d7921a4@[fc00:B::1]:3901",
|
|
"212fd62eeaca72c122b45a7f4fa0f55e012aa5e24ac384a72a3016413fa724ff@[fc00:F::1]:3901",
|
|
]
|
|
|
|
consul_host = "consul.service"
|
|
consul_service_name = "garage-daemon"
|
|
|
|
kubernetes_namespace = "garage"
|
|
kubernetes_service_name = "garage-daemon"
|
|
kubernetes_skip_crd = false
|
|
|
|
sled_cache_capacity = 134217728
|
|
sled_flush_every_ms = 2000
|
|
|
|
[s3_api]
|
|
api_bind_addr = "[::]:3900"
|
|
s3_region = "garage"
|
|
root_domain = ".s3.garage"
|
|
|
|
[s3_web]
|
|
bind_addr = "[::]:3902"
|
|
root_domain = ".web.garage"
|
|
|
|
[admin]
|
|
api_bind_addr = "0.0.0.0:3903"
|
|
trace_sink = "http://localhost:4317"
|
|
```
|
|
|
|
The following gives details about each available configuration option.
|
|
|
|
## Available configuration options
|
|
|
|
### `metadata_dir`
|
|
|
|
The directory in which Garage will store its metadata. This contains the node identifier,
|
|
the network configuration and the peer list, the list of buckets and keys as well
|
|
as the index of all objects, object version and object blocks.
|
|
|
|
Store this folder on a fast SSD drive if possible to maximize Garage's performance.
|
|
|
|
### `data_dir`
|
|
|
|
The directory in which Garage will store the data blocks of objects.
|
|
This folder can be placed on an HDD. The space available for `data_dir`
|
|
should be counted to determine a node's capacity
|
|
when [adding it to the cluster layout](@/documentation/cookbook/real-world.md).
|
|
|
|
### `block_size`
|
|
|
|
Garage splits stored objects in consecutive chunks of size `block_size`
|
|
(except the last one which might be smaller). The default size is 1MB and
|
|
should work in most cases. We recommend increasing it to e.g. 10MB if
|
|
you are using Garage to store large files and have fast network connections
|
|
between all nodes (e.g. 1gbps).
|
|
|
|
If you are interested in tuning this, feel free to do so (and remember to
|
|
report your findings to us!). When this value is changed for a running Garage
|
|
installation, only files newly uploaded will be affected. Previously uploaded
|
|
files will remain available. This however means that chunks from existing files
|
|
will not be deduplicated with chunks from newly uploaded files, meaning you
|
|
might use more storage space that is optimally possible.
|
|
|
|
### `replication_mode`
|
|
|
|
Garage supports the following replication modes:
|
|
|
|
- `none` or `1`: data stored on Garage is stored on a single node. There is no
|
|
redundancy, and data will be unavailable as soon as one node fails or its
|
|
network is disconnected. Do not use this for anything else than test
|
|
deployments.
|
|
|
|
- `2`: data stored on Garage will be stored on two different nodes, if possible
|
|
in different zones. Garage tolerates one node failure, or several nodes
|
|
failing but all in a single zone (in a deployment with at least two zones),
|
|
before losing data. Data remains available in read-only mode when one node is
|
|
down, but write operations will fail.
|
|
|
|
- `2-dangerous`: a variant of mode `2`, where written objects are written to
|
|
the second replica asynchronously. This means that Garage will return `200
|
|
OK` to a PutObject request before the second copy is fully written (or even
|
|
before it even starts being written). This means that data can more easily
|
|
be lost if the node crashes before a second copy can be completed. This
|
|
also means that written objects might not be visible immediately in read
|
|
operations. In other words, this mode severely breaks the consistency and
|
|
durability guarantees of standard Garage cluster operation. Benefits of
|
|
this mode: you can still write to your cluster when one node is
|
|
unavailable.
|
|
|
|
- `3`: data stored on Garage will be stored on three different nodes, if
|
|
possible each in a different zones. Garage tolerates two node failure, or
|
|
several node failures but in no more than two zones (in a deployment with at
|
|
least three zones), before losing data. As long as only a single node fails,
|
|
or node failures are only in a single zone, reading and writing data to
|
|
Garage can continue normally.
|
|
|
|
- `3-degraded`: a variant of replication mode `3`, that lowers the read
|
|
quorum to `1`, to allow you to read data from your cluster when several
|
|
nodes (or nodes in several zones) are unavailable. In this mode, Garage
|
|
does not provide read-after-write consistency anymore. The write quorum is
|
|
still 2, ensuring that data successfully written to Garage is stored on at
|
|
least two nodes.
|
|
|
|
- `3-dangerous`: a variant of replication mode `3` that lowers both the read
|
|
and write quorums to `1`, to allow you to both read and write to your
|
|
cluster when several nodes (or nodes in several zones) are unavailable. It
|
|
is the least consistent mode of operation proposed by Garage, and also one
|
|
that should probably never be used.
|
|
|
|
Note that in modes `2` and `3`,
|
|
if at least the same number of zones are available, an arbitrary number of failures in
|
|
any given zone is tolerated as copies of data will be spread over several zones.
|
|
|
|
**Make sure `replication_mode` is the same in the configuration files of all nodes.
|
|
Never run a Garage cluster where that is not the case.**
|
|
|
|
The quorums associated with each replication mode are described below:
|
|
|
|
| `replication_mode` | Number of replicas | Write quorum | Read quorum | Read-after-write consistency? |
|
|
| ------------------ | ------------------ | ------------ | ----------- | ----------------------------- |
|
|
| `none` or `1` | 1 | 1 | 1 | yes |
|
|
| `2` | 2 | 2 | 1 | yes |
|
|
| `2-dangerous` | 2 | 1 | 1 | NO |
|
|
| `3` | 3 | 2 | 2 | yes |
|
|
| `3-degraded` | 3 | 2 | 1 | NO |
|
|
| `3-dangerous` | 3 | 1 | 1 | NO |
|
|
|
|
Changing the `replication_mode` between modes with the same number of replicas
|
|
(e.g. from `3` to `3-degraded`, or from `2-dangerous` to `2`), can be done easily by
|
|
just changing the `replication_mode` parameter in your config files and restarting all your
|
|
Garage nodes.
|
|
|
|
It is also technically possible to change the replication mode to a mode with a
|
|
different numbers of replicas, although it's a dangerous operation that is not
|
|
officially supported. This requires you to delete the existing cluster layout
|
|
and create a new layout from scratch, meaning that a full rebalancing of your
|
|
cluster's data will be needed. To do it, shut down your cluster entirely,
|
|
delete the `custer_layout` files in the meta directories of all your nodes,
|
|
update all your configuration files with the new `replication_mode` parameter,
|
|
restart your cluster, and then create a new layout with all the nodes you want
|
|
to keep. Rebalancing data will take some time, and data might temporarily
|
|
appear unavailable to your users. It is recommended to shut down public access
|
|
to the cluster while rebalancing is in progress. In theory, no data should be
|
|
lost as rebalancing is a routine operation for Garage, although we cannot
|
|
guarantee you that everything will go right in such an extreme scenario.
|
|
|
|
### `compression_level`
|
|
|
|
Zstd compression level to use for storing blocks.
|
|
|
|
Values between `1` (faster compression) and `19` (smaller file) are standard compression
|
|
levels for zstd. From `20` to `22`, compression levels are referred as "ultra" and must be
|
|
used with extra care as it will use lot of memory. A value of `0` will let zstd choose a
|
|
default value (currently `3`). Finally, zstd has also compression designed to be faster
|
|
than default compression levels, they range from `-1` (smaller file) to `-99` (faster
|
|
compression).
|
|
|
|
If you do not specify a `compression_level` entry, Garage will set it to `1` for you. With
|
|
this parameters, zstd consumes low amount of cpu and should work faster than line speed in
|
|
most situations, while saving some space and intra-cluster
|
|
bandwidth.
|
|
|
|
If you want to totally deactivate zstd in Garage, you can pass the special value `'none'`. No
|
|
zstd related code will be called, your chunks will be stored on disk without any processing.
|
|
|
|
Compression is done synchronously, setting a value too high will add latency to write queries.
|
|
|
|
This value can be different between nodes, compression is done by the node which receive the
|
|
API call.
|
|
|
|
### `rpc_secret`
|
|
|
|
Garage uses a secret key that is shared between all nodes of the cluster
|
|
in order to identify these nodes and allow them to communicate together.
|
|
This key should be specified here in the form of a 32-byte hex-encoded
|
|
random string. Such a string can be generated with a command
|
|
such as `openssl rand -hex 32`.
|
|
|
|
### `rpc_bind_addr`
|
|
|
|
The address and port on which to bind for inter-cluster communcations
|
|
(reffered to as RPC for remote procedure calls).
|
|
The port specified here should be the same one that other nodes will used to contact
|
|
the node, even in the case of a NAT: the NAT should be configured to forward the external
|
|
port number to the same internal port nubmer. This means that if you have several nodes running
|
|
behind a NAT, they should each use a different RPC port number.
|
|
|
|
### `rpc_public_addr`
|
|
|
|
The address and port that other nodes need to use to contact this node for
|
|
RPC calls. **This parameter is optional but recommended.** In case you have
|
|
a NAT that binds the RPC port to a port that is different on your public IP,
|
|
this field might help making it work.
|
|
|
|
### `bootstrap_peers`
|
|
|
|
A list of peer identifiers on which to contact other Garage peers of this cluster.
|
|
These peer identifiers have the following syntax:
|
|
|
|
```
|
|
<node public key>@<node public IP or hostname>:<port>
|
|
```
|
|
|
|
In the case where `rpc_public_addr` is correctly specified in the
|
|
configuration file, the full identifier of a node including IP and port can
|
|
be obtained by running `garage node id` and then included directly in the
|
|
`bootstrap_peers` list of other nodes. Otherwise, only the node's public
|
|
key will be returned by `garage node id` and you will have to add the IP
|
|
yourself.
|
|
|
|
### `consul_host` and `consul_service_name`
|
|
|
|
Garage supports discovering other nodes of the cluster using Consul. For this
|
|
to work correctly, nodes need to know their IP address by which they can be
|
|
reached by other nodes of the cluster, which should be set in `rpc_public_addr`.
|
|
|
|
The `consul_host` parameter should be set to the hostname of the Consul server,
|
|
and `consul_service_name` should be set to the service name under which Garage's
|
|
RPC ports are announced.
|
|
|
|
Garage does not yet support talking to Consul over TLS.
|
|
|
|
### `kubernetes_namespace`, `kubernetes_service_name` and `kubernetes_skip_crd`
|
|
|
|
Garage supports discovering other nodes of the cluster using kubernetes custom
|
|
resources. For this to work `kubernetes_namespace` and `kubernetes_service_name`
|
|
need to be configured.
|
|
|
|
`kubernetes_namespace` sets the namespace in which the custom resources are
|
|
configured. `kubernetes_service_name` is added as a label to these resources to
|
|
filter them, to allow for multiple deployments in a single namespace.
|
|
|
|
`kubernetes_skip_crd` can be set to true to disable the automatic creation and
|
|
patching of the `garagenodes.deuxfleurs.fr` CRD. You will need to create the CRD
|
|
manually.
|
|
|
|
### `sled_cache_capacity`
|
|
|
|
This parameter can be used to tune the capacity of the cache used by
|
|
[sled](https://sled.rs), the database Garage uses internally to store metadata.
|
|
Tune this to fit the RAM you wish to make available to your Garage instance.
|
|
This value has a conservative default (128MB) so that Garage doesn't use too much
|
|
RAM by default, but feel free to increase this for higher performance.
|
|
|
|
### `sled_flush_every_ms`
|
|
|
|
This parameters can be used to tune the flushing interval of sled.
|
|
Increase this if sled is thrashing your SSD, at the risk of losing more data in case
|
|
of a power outage (though this should not matter much as data is replicated on other
|
|
nodes). The default value, 2000ms, should be appropriate for most use cases.
|
|
|
|
|
|
|
|
## The `[s3_api]` section
|
|
|
|
### `api_bind_addr`
|
|
|
|
The IP and port on which to bind for accepting S3 API calls.
|
|
This endpoint does not suport TLS: a reverse proxy should be used to provide it.
|
|
|
|
### `s3_region`
|
|
|
|
Garage will accept S3 API calls that are targetted to the S3 region defined here.
|
|
API calls targetted to other regions will fail with a AuthorizationHeaderMalformed error
|
|
message that redirects the client to the correct region.
|
|
|
|
### `root_domain` {#root_domain}
|
|
|
|
The optionnal suffix to access bucket using vhost-style in addition to path-style request.
|
|
Note path-style requests are always enabled, whether or not vhost-style is configured.
|
|
Configuring vhost-style S3 required a wildcard DNS entry, and possibly a wildcard TLS certificate,
|
|
but might be required by softwares not supporting path-style requests.
|
|
|
|
If `root_domain` is `s3.garage.eu`, a bucket called `my-bucket` can be interacted with
|
|
using the hostname `my-bucket.s3.garage.eu`.
|
|
|
|
|
|
|
|
## The `[s3_web]` section
|
|
|
|
Garage allows to publish content of buckets as websites. This section configures the
|
|
behaviour of this module.
|
|
|
|
### `bind_addr`
|
|
|
|
The IP and port on which to bind for accepting HTTP requests to buckets configured
|
|
for website access.
|
|
This endpoint does not suport TLS: a reverse proxy should be used to provide it.
|
|
|
|
### `root_domain`
|
|
|
|
The optionnal suffix appended to bucket names for the corresponding HTTP Host.
|
|
|
|
For instance, if `root_domain` is `web.garage.eu`, a bucket called `deuxfleurs.fr`
|
|
will be accessible either with hostname `deuxfleurs.fr.web.garage.eu`
|
|
or with hostname `deuxfleurs.fr`.
|
|
|
|
|
|
## The `[admin]` section
|
|
|
|
Garage has a few administration capabilities, in particular to allow remote monitoring. These features are detailed below.
|
|
|
|
### `api_bind_addr`
|
|
|
|
If specified, Garage will bind an HTTP server to this port and address, on
|
|
which it will listen to requests for administration features. Currently,
|
|
this endpoint only exposes Garage metrics in the Prometheus format at
|
|
`/metrics`. This endpoint is not authenticated. In the future, bucket and
|
|
access key management might be possible by REST calls to this endpoint.
|
|
|
|
### `trace_sink`
|
|
|
|
Optionnally, the address of an Opentelemetry collector. If specified,
|
|
Garage will send traces in the Opentelemetry format to this endpoint. These
|
|
trace allow to inspect Garage's operation when it handles S3 API requests.
|